摘要
混流汽车装配线工艺复杂,关键位置缓存区数量难以确定,造成装配线无法正常、高效运行。文章以评价混流汽车装配线重要因素的装配线平滑指数和产能最大化为优化目标,建立以混流汽车装配线工艺信息、空间布局、物流路径为约束条件,关键位置缓存区数量为变量的仿真模型;针对该问题的复杂性,提出了一种基于遗传算法的仿真优化算法,并在Delmia/QUEST仿真环境中进行仿真优化,从而确定关键位置缓存区最优数量,实现装配线动态平衡和产能最大化。
The processes of the mixed-model automobile assembly lines are complex and the number of buffer area of the key position is difficult to determine, which makes the assembly lines process ineffi- cient. This paper aims at optimizing the smoothness index and maximizing the product ability, which are essential factors in evaluating the assembly lines. The simulation model is established through set- ting the process information, spatial layout and logistics route as restrict conditions and the number of buffer area of the key position as variables. In view of the complexity of this problem, a simulation optimization algorithm based on genetic algorithm is put forward, and the optimization in the Delmia/ QUEST simulation environment is conducted to get the optimal number of buffer area of the key posi- tion and to realize the dynamic balance and the maximum product ability of the assembly lines.
出处
《合肥工业大学学报(自然科学版)》
CAS
北大核心
2017年第9期1168-1171,1268,共5页
Journal of Hefei University of Technology:Natural Science
基金
上海市科委资助项目(15111107502)
关键词
混流装配线
缓存区数量
遗传算法
仿真优化
动态平衡
产能最大化
mixed-model assembly line
number of buffer area
genetic algorithm
simulation optimization
dynamic balance
maximum product ability