期刊文献+

基于环型网络模体应用马尔科夫聚类的图挖掘模型 被引量:4

Graph Mining Model Using Markov Clustering Based on Annular Network Motifs
下载PDF
导出
摘要 针对图数据挖掘效率低、精度低等问题,提出基于环型网络模体应用马尔科夫聚类的图挖掘模型.首先,依据输入图的点集,采用Erd o″s-Rényi模型生成随机图,在输入图和随机图的子图挖掘过程中利用向量的加法性质判定环型子图,计算网络模体的统计特征,判断子图是否为网络模体.然后,求解图中边的绝对贡献值关联矩阵,通过动态阈值法求得阈值,二值化处理该矩阵.最后,对已稀疏化的图进行扩张和膨胀操作,使其达到收敛状态.实验表明,文中模型有效减少运行时间,在保证聚类质量同时提高图挖掘效率. Aiming at the problems of low efficiency and accuracy of data mining, a graph mining model using Markov clustering based on annular network motifs is proposed. Firstly, the Erd b s-R6nyi model is employed to generate random graphs according to the vertices set of the input graph. Annular sub-graphs are judged by the additive property of vectors in the process of sub-graph mining from input and random graphs. In the next step, the motif statistical characteristics are calculated and used to label the annular motifs. Then, the correlation matrix of absolute contribution of edges is solved in the graph, and the threshold is obtained by dynamic threshold method for the binarization of matrix. Finally, inflation and expansion processes are carried out on the sparsified graph data to achieve the state of convergence. Experimental results show that the proposed model can effectively reduce the running time and improve the mining efficiency of the graph with the guaranteed clustering quality.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2017年第9期803-814,共12页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61373127) 辽宁省高等学校优秀人才支持计划项目(No.LR2015033) 辽宁省科技计划项目(No.2013405003) 大连市科技计划项目(No.2013A16GX116)资助~~
关键词 图挖掘 环型网络模体 马尔科夫聚类 Graph Mining, Annular Network Motifs, Markov Clustering
  • 相关文献

参考文献4

二级参考文献47

  • 1陆还珠,李贤辰.机械图消隐方法一探[J].计算机辅助设计与图形学学报,1994,6(3):233-238. 被引量:19
  • 2张树有.侧点法自动跟踪获取图形轮廓信息[J].浙江大学学报(自然科学版),1996,30(4):403-407. 被引量:18
  • 3Zhang Z F, Li Q D, Zeng D, Gao H. User community discovery from multi-relational networks. Decision Support Systems, 2013, 54(2): 870-879.
  • 4Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826.
  • 5Zhang Z Y. Community structure detection in complex networks with partial background information. Europhysics Letters, 2013, 101(4): 48005.
  • 6Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005, 435(7043): 814-818.
  • 7Clauset A. Finding local community structure in networks. Physical Review E, 2005, 72(2): 026132.
  • 8Bagrow J P, Bollt E M. Local method for detecting communities. Physical Review E, 2005, 72(4): 046108.
  • 9Chen J Y, Zaiane O R, Goebel R. Local community identification in social networks. In: Proceedings of the 2009 International Conference on Advances in Social Network Analysis and Mining. Athens, Greek: IEEE, 2009. 237-242.
  • 10Chen Q, Wu T T, Fang M. Detecting local community structures in complex networks based on local degree central nodes. Physica A: Statistical Mechanics and Its Applications, 2013, 392(3): 529-537.

共引文献39

同被引文献53

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部