期刊文献+

基于混淆矩阵的多目标优化三支决策模型 被引量:15

Three-Way Decisions Model for Multi-object Optimization Based on Confusion Matrix
下载PDF
导出
摘要 鉴于混淆矩阵在机器学习算法性能评价领域的通用性,文中以混淆矩阵为基础构造概率粗糙集三支决策度量系统,给出部分度量指标之间的性质及其证明,提出基于混淆矩阵度量指标体系的多目标优化三支决策阈值求解模型.模型中多目标优化函数被视为不同三支决策度量指标的加权之和,而最优阈值的求解也获得一种新型的语义解释.最后通过实例演示模型如何确定接受与拒绝域阈值,同时对比Pawlak粗糙集方法,表明文中模型获得的三支决策能够更好地平衡决策的准确率与承诺率. In consideration of the generalized application of confusion matrix as an important algorithmic measurement tool in machine learning field, a three-way decision measure system of the probabilistic rough set is constructed based on three-way decision confusion matrix. Then, the properties of partial three-way decision measures are discussed. A multi-object optimization function model for three-way decisions thresholds computing is proposed as well. In this model, multi-object optimization functions are considered as weighted sums of three-way decisions measures , and a new semantic interpretation is acquired for solving the optimal threshold. Finally, the solving process of accepting and rejecting thresholds of the model is demonstrated via an case. By comparing with the classic Pawlak rough set method and confusion matrix model, the confusion matrix model can better balance the accurate rate and the commitment rate for three-way decisions.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2017年第9期859-864,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61763031 61673301) 高等学校博士学科点专项科研基金项目(No.20130072130004) 上海市自然科学基金项目(No.14ZR1442600)资助~~
关键词 三支决策 概率粗糙集 目标函数 混淆矩阵 Three-Way Decisions, Probabilistic Rough Set, Objective Function, Confusion Matrix
  • 相关文献

参考文献2

二级参考文献26

  • 1郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 2Liu B. Sentiment analysis and opinion mining [J]. Synthesis Lectures on Human Language Technologies, 2012, 5(1) : 1- 167.
  • 3Taboada M, Brooke J, Tofiloski M, et al. Lexicon-based methods for sentiment analysis [J]. Computational Linguistics, 2011, 37(2): 267-307.
  • 4Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques [C] //Proc of the 2002 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2002:79-86.
  • 5Tan Songbo, Zhang Jin. An empirical study of sentiment analysis for Chinese documents [J]. Expert Systems with Applications, 2008, 34(4): 2622-2629.
  • 6Chen Zhancheng, Zou Bowei, Zhu Qiaoming, et al. The construction of Chinese negation and uncertainty identification corpus [G] //LNCS 8229: Proc of the 14th Chinese Lexical Semantics Workshop. Berlin: Springer, 2013:226-231.
  • 7Jia L F, Yu C, Meng W Y. The effect of negation on sentiment analysis and retrieval effectiveness [C] //Proc of the 18th ACM Conf on Information and Knowledge Management. New York; ACM, 2009: 1827-1830.
  • 8Zhu X D, Guo H Y, Mohammad S, et al. An empirical study on the effect of negation words on sentiment [C]//Proe of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA.. ACL, 2014: 304-313.
  • 9张志飞,李飚,卫志华,等.中文否定句的情感倾向性分析[C]//第5届中文倾向性分析评测会议.北京:中国中文信息学会,2013:111-120.
  • 10Pawlak Z, Grzymala-Busse J, Slowinski R, et al. Rough sets [J]. Communications of the ACM, 1995, 38(11): 88-95.

共引文献405

同被引文献153

引证文献15

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部