摘要
运用时间连续且状态离散的灰色Markov过程模型,对装备维修器材的需求量进行了预测。根据装备维修器材消耗历史数据的变化幅度和数据的分布情况来划分状态区间。由各区间状态的转换情况得到Markov模型状态间的一步转移概率,论证与运用Kolmogorov微分方程求解各状态概率的时间函数并建立状态概率预测式,根据预测状态的概率值确定了灰色预测值的定位系数并求解预测值。算例分析表明,在预测维修器材需求量数据时,灰色Markov改进模型的预测精度较GM(1,1)模型、一般灰色Markov残差修正模型以及时间离散灰色Markov链预测模型有了稳定提高,证明了该模型的有效性和实用性。
The time continuous and state discrete grey Markov model is used to predict the demand of equipment maintenance materials. The state intervals are set according to the changing amplitude and distribution of consumed maintenance materials. The one-step Markov transition matrix is calculated by states transition. Kolmogorov differential equations are used to solve the time functions of state probabilities and establish the prediction equations of state probabilities. The grey positioning coefficient is determined from the probability values of predicted states. The case analysis shows that the prediction accuracy of the improved grey Markov model is higher than those of GM( 1,1) model,traditional grey Markov residual error correction model and grey Markov chain model. Its validity and practicability were proven during the prediction of equipment material demand.
出处
《兵工学报》
EI
CAS
CSCD
北大核心
2017年第9期1862-1866,共5页
Acta Armamentarii
基金
复杂地面系统仿真重点实验室预先研究基金项目(9140C900104150C90384)