期刊文献+

基于扩展Kalman滤波的无人机位姿校正

Research on the attitude correction of unmanned aerial vehicle based on extended Kalman filter
下载PDF
导出
摘要 无人机姿态控制问题是无人机稳定性飞行的关键,针对无人机在位姿参数不确定条件下制导控制器姿态定位精度不高的问题,提出了一种基于扩展Kalman滤波的无人机位姿校正方法,进行制导系统稳定性控制律设计.建立无人机飞行动力学模型,构建飞行弹道方程,分析无人机制导系统被控对象的约束参量,采用加速度计、陀螺计和磁力计进行位姿参量测量.考虑到位姿参数的不确定性,采用扩展Kalman滤波算法进行姿态参数的整定性处理,实现角度校正.将校正后的位姿参数输入模糊神经网络系统中,实现无人机制导控制律的优化设计.仿真结果表明,采用该方法进行无人机位姿校正和飞行制导控制,定姿精度较高、抗干扰能力较强,实现了飞行的稳定性控制. UAV attitude control is the key technology for UAV flight stability. Considering the lower accuracy of the guidance controller attitude positioning of UAV in the posture parameters under uncertainty problems,an UAV attitude correction method is proposed based on extended Kalman filter,and the navigation system stability control law design method is presented. The establishment of UAV flight dynamics model is taken,the flight trajectory equation is constructed,the UAV guidance system with constraint parameter object is analyzed,the accelerometer,gyroscope and magnetometer are used to obtain the position parameter measurement considering the pose parameter uncertainty,the qualitative treatment of extended Kalman filter algorithm of attitude parameters is conducted,realizing the angle correction. The position and orientation parameters are input into the fuzzy neural network to realize the optimal design of the guidance control law. The simulation results show that the proposed method can be used in the flight guidance control of UAV,and the attitude accuracy is higher.
作者 李可
出处 《河南工程学院学报(自然科学版)》 2017年第3期44-49,共6页 Journal of Henan University of Engineering:Natural Science Edition
基金 河南工程学院校级质量工程项目(508905)
关键词 无人机 制导系统 稳定性控制 扩展Kalman滤波 unmanned aerial vehicle guidance system stability control extended Kalman filter
  • 相关文献

参考文献7

二级参考文献96

  • 1GE Zhe-xue YANG Yong-min HU Zheng.A New UKF Based Fault Detection Method in Non-linear Systems[J].International Journal of Plant Engineering and Management,2006,11(3):179-183. 被引量:1
  • 2Titterton D H.Weston J L.捷联惯性导航技术[M].张天光,王秀萍,王丽霞,等.译.北京:国防工业出版社,2007:129-140.
  • 3秦永元.惯性导航[M].北京:科学出版社,2005:203-381.
  • 4Balas G G, Hodgkinson J. Control design methods for goodflying qualities [C] . AIAA Atmospheric Flight MechanicsConf. Chicago: AIAA, 2009: 1-20.
  • 5Beh H, Hofinger G,Huber P. Control law design of theexperimental aircraft X-31A[C] . The 19th Congress of theICAS. Anaheim: AIAA, 1994: 541-549.
  • 6Reiner J, Balas G J, Garrard W L. Flight controldesign using robust dynamic inversion and time-scaleseparation[J] . Autamatica, 1996,32(11): 1493-1504.
  • 7Moghaddam M M, Moosavi S F. Robust maneuveringcontrol design of an aircraft via dynamic inversion and jx-synthesis[J] . Proc oflMechE, 2005,219(1): 11-18.
  • 8Atesoglu O, Ozgoren M K. Control and robustnessanalysis for a high-a maneuverable thrust-vectoring fighteraircraft[J] . J of Guidance, Control and Dynamics, 2009,32(5): 1483-1496.
  • 9Papageorgiou G, Polansky M. Tuning a dynamic inversionpitch axis autopilot using McFarlane-Glover loopshaping[J] . Optimal Control Applications and Methods,2009,30(3): 287-308.
  • 10Wang Q, Stengel R F. Robust nonlinear flight controlof a high-performance aircraft[J] . IEEE Trans on ControlSystems Technology, 2005,13(1): 15-26.

共引文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部