期刊文献+

模型融合在用户续购行为分析中的应用 被引量:2

Application of Model Blending in User Renewal Behavior Analysis
下载PDF
导出
摘要 当今时代大数据分析及其商业应用已成为研究热点,根据机器学习中集成学习的思想,从模型融合方面着手,研究提高模型融合准确率和鲁棒性的方法,设计了基于逻辑回归的二层模型融合算法,简称TMBLR算法,并将该算法应用于某商业软件的用户续购分析上.实验结果显示,该融合模型算法有更高的鲁棒性和更准确的预测结果,比使用单个基分类器的F1值高出2.05%;与常用的投票法相比,该算法的平均F1值高出1.1%,F1值的均方差值要低7.2‰,表明该算法稳定性更好;在该融合算法的第二层训练中,使用逻辑回归算法时的准确率、F1值和时间效率较高. Big data analysis and commercial usage became a hot issue at present. According to ensemble learning method and model blending method in machine learning ,in order to improve the precision and robustness of the model, a Logistic Regression based two- level model blending algorithm is designed and used for user renewal behavior of business software. The experience result shows that the algorithm is robustness and high prediction result. The Fl-score of the new algorithm is 2.05 percentage higher than single basic classifier method. Comparing with the model blending algorithm based on voting, the TMBLR algorithm has higher average Fl-score with 1.1 percent and lower mean square deviation value to indicate higher stability with 7.2‰. The logistic regression algorithm achieve the best performance on precision and Fl-socre and time efficiency, when using different algorithms on the second-level blend in TMBLR algorithm.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第10期2231-2235,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(F020107)资助
关键词 大数据 机器学习 集成学习 模型融合 逻辑回归 big data machine learning ensemble learning model blending logistic regression
  • 相关文献

参考文献8

二级参考文献184

  • 1闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,21(7):4-10. 被引量:56
  • 2徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595. 被引量:1431
  • 3王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 4王晓丹,孙东延,郑春颖,张宏达,赵学军.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6):54-57. 被引量:22
  • 5Dieteerich T G.Ensemble methods in machine learning[C].In:Kittler J and Roli F ed.Proceedings of the First International Workshop on Multiple Classifier Systems.Cagliari,Italy,2000,1-15.
  • 6Kettler J,Hatef M,Robert P W,et al.On combining classifiers[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,20(3):226-239.
  • 7Brown G,Wyatt J,Harris R,et al.Diversity creation methods:a survey and categorization[J].Information Fusion Journal,2004,6(1):5-20.
  • 8Tang E K,Suganthan P N,Yao X.An analysis of diversity measures[J].Machine Learning,2006,65(1):247-271.
  • 9Provost F J,Aronis J M.Scaling up inductive learning with massive parallelism[J].Machine Learning,1996,23(1):1-42.
  • 10Chawla N V,Moore T E,Hall L O,et al.Distributed learning with bagging like performance[J].Pattern Recognition Letters,2003,24(1-3):455-471.

共引文献178

同被引文献10

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部