期刊文献+

基于核协作表示的目标跟踪算法

Object Tracking Algorithm Based on Kernel Collaborative Representation
下载PDF
导出
摘要 大多数现有的基于稀疏表示的视觉跟踪算法大都通过模板的线性组合来重构目标,但是没有考虑模板与模板之间以及模板与候选目标之间的非线性关系,造成算法对目标的判别能力下降,在复杂环境下容易跟踪失败.为了解决上述问题,提出一种结合核协作表示的目标跟踪算法,利用核函数将候选目标与模板映射到高维核空间,得到它们的非线性表示,并在高维核空间求解目标的稀疏系数,提高算法对目标的判别能力.为提高跟踪速度,选用l2最小化方法.实验结果表明,本文算法在跟踪精度与鲁棒性方面都有较大提高. Most existing visual tracking algorithm based on sparse representation just used a linear combination of the templates for re- constructing the target. However,the nonlinear relationship between the templates and the candidates which may cause a decline about the discriminating ability, and further lead to the tracking task failure in the complex environment are neglected. To address this problem we discussed, an innovative tracking algorithm based on kernel collaborate is proposed in this paper. The templates and the candicates are mapped to a high-dimensional kernel space by using a kernel function, and can obtain the nonlinear representation of the templates and the candidates. Then,the sparse coefficient of the target which improve the ability of discriminant for a fight target can be achieved in a high-dimensional kernel space. Moreover, al2 norm minimization method is used for improving computation speed. The experimental result shows that the proposed algorithm is improved both in tracking accuracy and robustness in a sense.
作者 卢钢 彭力
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第10期2253-2257,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61374047)资助 江苏省产学研联合创新基金-前瞻性研究项目(BY2014024 BY2014023-36 BY2014023-25)资助
关键词 核协作表示 目标跟踪 稀疏表示 核空间 非线性表示 kernel collaborative representation object tracking sparse representation kernel space nonlinear representation
  • 相关文献

参考文献2

二级参考文献34

  • 1Comaniciu D, Ramesh V, and Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 2Ross D, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
  • 3Kwon J and Lee K M. Visual tracking decomposition[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 2010: 1269-1276.
  • 4Babenko B, Yang M H, and Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
  • 5Ang Li, Tang Feng, Guo Yan-wen, et al. Discriminative nonorthogonal binary subspace tracking[C]. Proceedings of Europe Conference on Computer Vision, Crete, 2010: 258-271.
  • 6Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 7Mei X and Ling H B. Robust visual tracking using 11 minimization[C]. Proceedings of IEEE International Conference on Computer Vision, Kyoto, 2009: 1436-1443.
  • 8Liu Bai-yang, Yang Lin, Huang Jun-zhou, et al. Robust and fast collaborative tracking with two stage sparse optimization[C]. Proceedings of Europe Conference on Computer Vision, Crete, 2010, Part IV: 624-637.
  • 9Mei X, Ling H B, Wu Y, et al. Minimum error bounded efficient l1 tracker with occlusion detection[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 1257-1264.
  • 10Bao Cheng-long, Wu Yi, Ling Hai-bin, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1830-1837.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部