期刊文献+

一种结合旋转森林变换与多分类器集成的隐写分析算法 被引量:4

Novel Steganalysis Algorithm Combine Rotating Forest Transformation with Multiple Classifiers Ensemble
下载PDF
导出
摘要 针对图像隐写分析中,集成分类器的基分类器精度较低、分类器种类单一的缺点,提出一种结合旋转森林变换与多分类器集成的隐写分析算法.首先随机生成若干特征子空间并与训练样本组成不同的样本子集,然后对每个样本子集使用旋转森林算法训练费歇尔线性分类器、极限学习机与支持向量机三种分类器,并通过加权投票的方式将三种分类器集成为一个基分类器.最后将各基分类器分类结果使用简单投票法进行集成.实验结果表明,在不同的隐写算法与嵌入率的条件下,与传统集成分类器和集成极限学习机分类器相比,该算法降低了3.2%与1.1%的误检率,能够有效提升集成分类器的检测精度. Concerning the problems that the accuracy of basic classifier is low and the kind of basic classifier is single in ensemble classifiers for steganalysis,a novel algorithm combine rotating forest transformation with multiple classifiers ensemble was proposed. First, some feature subsets generated randomly combine with training samples to generate different sample subsets. Second, every sample subset was transformed by rotating forest algorithm and trained fisher linear discriminate, extreme learning machine and support vector machine,then the weighted voting method was used to ensemble three classifiers as a basic classifier. At last,the majority voting method was used to integrate the decisions of basic classifiers. Experimental results show that by different steganography approaches and in different embedding rate conditions, the prediction error rate of proposed method decreased by 3.2% and 1.1% in compared with the typical ensemble classifiers and ensemble classifiers of extreme learning machines, therefore demonstrating the proposed method could improve the detection accuracy of ensemble classifiers.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第10期2297-2302,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61379152 61402531)资助 陕西省自然科学基础研究计划项目(2015JQ6231 2014JQ8358)资助
关键词 图像隐写分析 集成分类器 旋转森林 多分类器集成 加权投票 steganalysis ensemble classifier rotation forest multiple classifiers ensemble weighted voting
  • 相关文献

参考文献3

二级参考文献37

  • 1李青,焦李成.利用集成支撑矢量机提高分类性能[J].西安电子科技大学学报,2007,34(1):68-70. 被引量:6
  • 2Kuncheva L I. Combining Pattern Classifiers: Methods and Algorithms [M]. New Jersey: John Wiley & Sons, 2004.
  • 3Rodriguez J J, Kuncheva L I, Alonso C J. Rotation Forest: A New Classifier Ensemble Method [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10): 1619-1630.
  • 4Zhang L, Zhou W D. Sparse Ensemble Using Weighted Combination Methods based on Linear Programming [J]. Pattern Recognition, 2011, 44(1): 97-106.
  • 5Hansen L K, Salamon P. Neural Network Ensembles [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001.
  • 6Alham N K, Li M Z, Liu Y, et al. A Distributed SVM Ensemble for Image Classification and Annotation [C]//9th International Conference on Fuzzy Systems and Knowledge Discovery. Piseataway: IEEE, 2012: 1581-1584.
  • 7Ghorai S, Mukherjee A, Sengupta S, et al. Cancer Classification from Gene Expression Data by NPPC Ensemble [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2,011, 8(3): 659-671.
  • 8Vapnik V. The Nature of Statistical Learning Theory [M]. Berlin: Springer-Verlag, 1999.
  • 9Vincent P, Bengio Y. Kernel Matching Pursuit [J]. Machine Learning, 2002, 48(1-3) : 165-187.
  • 10Opitz D W. Feature Selection for Ensemble [C]//Proceedings of the National Conference on Artificial Intelligence. New York: ACM, 1999: 379-384.

共引文献18

同被引文献26

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部