期刊文献+

基于辅助变量的压缩采样匹配追踪闭环系统辨识方法 被引量:4

An instrumental variable based compressed sampling matching pursuit method for closed-loop identification
原文传递
导出
摘要 针对被控对象和反馈通道均具有未知时滞的闭环系统,提出一种基于辅助变量的压缩采样匹配追踪辨识方法.该方法利用辅助变量方法对压缩采样匹配追踪算法进行改进,获得过参数化辨识模型稀疏参数向量的估计,根据稀疏向量的结构得到前向通道的参数估计和时滞估计,进而根据模型等价原理获得反馈通道的参数估计.仿真结果表明,所提出方法仅需少量的迭代即可获得这类闭环系统参数与时滞的有效估计. For the identification of a class of closed-loop systems with unknown time-delays in both the control plant and the feedback controller, an instrumental variable based compressed sampling matching pursuit method is developed.By using the instrumental variable identification idea to modify the compressed sampling matching pursuit algorithm,the sparse parameter vector of the overparameterized identification model is firstly estimated. Then the estimates of the control plant parameters and the time-delays can be extracted from the estimated parameter vector, and the parameters of the feedback controller can be obtained by using the model equivalence principle. Simulation results show that the proposed method can effectively estimate the parameters and time-delays for the class of closed-loop systems with only a few iterations.
作者 刘艳君 韩雪 丁锋 LIU Yan-jun HAN Xue DING Feng(Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University Wuxi 214122, China School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China)
出处 《控制与决策》 EI CSCD 北大核心 2017年第10期1837-1843,共7页 Control and Decision
基金 国家自然科学基金项目(61304138 61473136 61203111) 江苏省自然科学基金项目(BK20130163)
关键词 闭环辨识 时滞估计 辅助变量法 压缩采样匹配追踪算法 稀疏向量 closed-loop identification time-delay estimation instrumental variable method compressed sampling matching pursuit algorithm sparse vector
  • 相关文献

参考文献3

二级参考文献81

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, Spain: European Mathematical Society Publishing House, 2006. 1433-1452.
  • 4Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 5Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.
  • 6Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1996.
  • 7Candes E, Donoho D L. Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Technical Report 1999-28, Department of Statistics, Stanford University, USA, 1999.
  • 8Aharon M, Elad M, Bruckstein A M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322.
  • 9Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219.
  • 10Candes E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3): 969-985.

共引文献213

同被引文献21

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部