摘要
传统意义上系统参数的辨识均基于一个已知的系统结构,一旦系统结构未知或不精确,就会导致参数辨识的较大误差。本文尝试从逆向思维出发,由参数辨识算法反推模型结构,利用基于最小二乘的双惯量辨识算法获取电机侧转动惯量,与其真实值构建误差评价函数,从而判断驱动系统结构属于单惯量刚性系统或双惯量弹性系统,再利用与模型结构相对应的最小二乘辨识算法,对系统的机械参数进行辨识,实现驱动系统结构与参数的双重优化。
In the traditional sense, the identification of system parameters is based on a known system structure. Once the system structure is unknown or inaccurate, it will lead to a large error in parameter identification. In this paper, the model structure was deduced from the parameter identification algorithm. The inertia of the motor was obtained by using the two-mass identification algorithm based on the least squares, and the error evaluation function was constructed with the real value, the drive system structure could be judged. For the one-mass rigid system and the two-mass elastic system, using the corresponding least squares identification algorithm can realize the double optimization of drive system structure and parameters.
出处
《微电机》
2017年第9期27-32,共6页
Micromotors
基金
国家自然科学基金(51677037)
国家自然科学基金资助项目(51690182)
关键词
最小二乘算法
单惯量刚性系统
双惯量弹性系统
误差评价函数
参数辨识
least square method
one-mass rigid system
two-mass elastic system
error evaluation function
parameter identification