期刊文献+

公交客车纵向车速估算研究

Research on the Estimation of Longitudinal Velocity of Bus
下载PDF
导出
摘要 公交客车在ABS工况下轮胎产生较大的滑移,这时纵向车速和轮速相差较大,不能通过轮速来估算车速。为了研究公交客车纵向车速估算问题,文中先建立七自由度整车模型和综合工况下的轮胎模型;然后引入CKF(容积卡尔曼滤波)算法,结合上述整车模型和轮胎模型,推导出CKF算法的系统状态方程和测量方程;最后在MATLAB/SIMULINK中建立CKF算法和系统模型,在TruckSim中设置仿真工况并对真实车辆进行模拟,然后通过MATLAB/SIMULINK和TruckSim联合仿真进行验证,仿真结果表明:CKF算法估算的车速与TruckSim整车模型中计算的车速基本保持一致,从而说明公交客车的纵向车速估算采用CKF算法是有效的。 The tires wil produce a large slip when the bus is in the condition of ABS.The difference of the longitudinal vehicle velocity and wheel speed is large ,so we can not use the wheel speed to estimate the vehicle velocity. In order to study the estimation of the longitudinal vehicle velocity of the bus, the seven-degree-of-freedom vehicle model and the tire model in the comprehensive condition are established firstly. Then, the CKF (Cubature Kalman Filter) algorithm is introduced. Combined with the vehicle model and the tire model, the system state equation and the measurement equation of the CKF algorithm are derived. Finally, the CKF algorithm and the system model are established in MATLAB/SIMULINK. The simulation conditions and the simulation of the real vehicle are carried out in TruckSim. The co-simulation results of MATLAB/ SIMULINK and TruckSim show that the velocity estimated by CKF algorithm is consistent with the velocity from TruckSim model, which indicates that the CKF algorithm is valid for the longitudinal vehicle velocity estimation.
出处 《机械设计与制造》 北大核心 2017年第10期100-104,共5页 Machinery Design & Manufacture
基金 国家科技支撑计划课题-宇通双源快充纯电动公交客车开发及产业化(2015BAG01B01)
关键词 ABS控制 轮胎模型 车辆模型 滑移率控制 车速估算 容积卡尔曼滤波 ABS Control Tire Model Vehicle Model Slip Rate Control Vehicle Velocity Estimation Cubature Kalman Filter
  • 相关文献

参考文献4

二级参考文献27

  • 1文成林,吕冰,葛泉波.一种基于分步式滤波的数据融合算法[J].电子学报,2004,32(8):1264-1267. 被引量:31
  • 2柴霖,袁建平,罗建军,方群,岳晓奎.非线性估计理论的最新进展[J].宇航学报,2005,26(3):380-384. 被引量:35
  • 3Van der Merwe R,Wan E A.The square-root unscentedKalman filter for state and parameter estimation[C]//Proc.IEEE International Conference on ICASSP,2001:3461-3464.
  • 4R van der Merwe.Sigma-point Kalman filters for probabilis-tic inference in dynamic state-space models[D].Portland,OR,USA:OGI School of Science&Engineering at OregonHealth&Science University,2004.
  • 5Ienkaran Arasaratnam,Simon Haykin.Cubature Kalman fil-ters[J].IEEE Transactions on Automatic Control,2009,54(6):1254-1269.
  • 6S.Antonov, A.Fehn, A.Kugi. Unscented Kalman filter for vehicle state estimation[J]. Vehicle System Dynamics, 2011,9(49):1497-1520.
  • 7Wan E.A, Van Der Merwe R. The Unscented Kalman Filter for Nonlinear Estimation [ C ]. Adaptive Systems for Signal Processing, Communications, and Control Symposium, 2000:153-158.
  • 8Liang Chu,Zhang Yong-sheng, Shi Yan-ru.Vehicle Lateral and Longitu- dinal Velocity Estimation Based on Unscented Kalman Filter [C]. 2nd Intermational Conference on Education Technology and Computer, 2010: 427,432.
  • 9Janni Hartikainen and Simo Sarkka. Optimal filtering with Kalman filters and smoothers a Manual for Matlab toolbox EKF/UKF [ M ]. Laboratory of Computa-tional Engineering, Helsinki University of Technology, 2007.
  • 10JohnT.Tielking, Naveen K.Mital.A Comparative Evaluation of Five Tract- ion Tire Models [ R ].Interim Document 6,Jan.1974,Highway Safety Rese- arch Institute, University of Michigan, 2007.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部