期刊文献+

物联网环境下的大型立磨状态监测及损伤预警系统模型 被引量:5

Large Vertical Mill Condition Monitoring and Damage Early Warning System Model Under Internet of Things Environment
下载PDF
导出
摘要 针对目前大型立磨状态监测参数较少,网络化执行程度较低的问题,从底层、中间层和功能应用层三层角度搭建了物联网环境下的大型立磨状态监测及损伤预警系统框架结构,并建立了包含状态特征量信息采集、数据预处理、故障诊断、信息发布与反馈、系统管理等模块的系统功能模型。基于上述模型,编制了状态监测及损伤预警系统。系统能够实现物联网环境下大型立磨多特征量状态监测和损伤预警,对提高大型立磨生产效率和设备运行稳定性意义重大。 Aiming at the problem that the monitoring parameters were less and the level of network implementation was low, a large vertical mill condition monitoring and damage early warning system framework under internet of things environment was built from the point view of three layers -the bottom, the middle and the functionality application layer, and the system function model containing feature information collection, data preprocessing, fault diagnosis, information dissemination and feedback, system management modules was established. Based on the model above, the condition monitoring and damage early warning system was compiled. The system could realize large vertical mill multi characteristic condition monitoring and damage early warning under internet of things environment and it was of great significance to improve production efficiency and equipment operation stability far large vertical mill.
出处 《机械设计与制造》 北大核心 2017年第10期168-170,174,共4页 Machinery Design & Manufacture
基金 安徽省自然科学基金项目(1508085QE91) 安徽省科技攻关计划项目(1301022066) 安徽建筑大学博士基金项目(2014nzx-099)
关键词 物联网 立磨 状态监测 预警 系统 Internet of Things Vertical Mill Condition Monitoring Early Warning System
  • 相关文献

参考文献3

二级参考文献29

  • 1许飞云,胡建中,贾民平,钟秉林.嵌入式旋转机械状态监控与故障诊断系统研究[J].东南大学学报(自然科学版),2004,34(6):761-765. 被引量:21
  • 2陈锦玲.监测诊断技术在舰船动力装置的应用[C]//中国造船工程学会修船技术学术委员会2004年年会论文集.北京:中国造船工程学会,2004:255-259.
  • 3Hameed Z, Hong Y S, Cho Y M, et al. Condition Monitoring and Fault Detection of Wind Turbines and Related Algorithms: a Review[J]. Renewable and Sustainable Energy Reviews, 2009,13 (1): 1-39.
  • 4Yang W, Tavner P J, Wilkinson M R. Condition Monitoring and Fault Diagnosis of a Wind Turbine Synchronous Generator Drive Train[J]. IET Renewable Power Generation, 2009,3 (1): 1-11.
  • 5Haffaf H, Ould Bouamama B,Dauphin- Tanguy G. Matroid Algorithm for Monitorability Analysis of Bond Graphs[J]. Journal of the Franklin Institute, 2006,343(1):111-123.
  • 6陈磊,韩捷,孙俊杰.基于嵌入式技术的设备状态监测与故障诊断系统设计[c].2008年全国振动工程及应用学术会议暨第十一届全国设备故障诊断学术会议,2008.
  • 7薛伟,董辛曼.面向物联网的设备状态监测系统关键技术研究[D].郑州:郑州大学,2012(5):19-21.
  • 8袁冬梅,罗辑,唐毅锋.数控机床振动监测系统设计[J].2007(4):221-224.
  • 9TATBUL N, AHMAD Y,QETINTEMEL U, et al. Loadmanagement and high availability in the borealis distributedstream processing engine[M]//GeoSensor Networks. Berlin,Germany : SpringerVerlag,2008: 66-85.
  • 10WAT AN ABE Y,YOKOTA H. Development of a disk-powermonitoring environment using a stream processing engine[C]//Proceedings of the 7th International Conference on P2P,Parallel,Grid,Cloud and Computing. Washiton, D. C.,USA:IEEE, 2012: 351-356.

共引文献26

同被引文献32

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部