期刊文献+

基于CART算法的电能表故障概率决策树分析 被引量:8

Analysis of decision tree for power meter fault probability based on CART algorithm
下载PDF
导出
摘要 随着全采集、全覆盖工作的深入开展,电能表档案信息和运行信息的不断完善,SG186系统的深化应用,全方面珍贵数据的汇总为电能表资产寿命预测提供了条件。电能表故障概率的预测对工作计划的制定有着指导性意义,关系到资产到货、检定、配送、仓储等多个环节。本文以CART算法为基础,通过分析与电能表故障相关的多个属性,建立并优化决策树,给出电能表故障概率,为继续开展此项工作提供了理论基础和数据模型。 All aspects of the great summary, of valuable data provides possibility for the prediction of power meter asset life with the indepth development of full collection and full coverage work, the continuous improvement of power meter file information and running information and further application of SG186 system. The prediction of power meter fault probability has guiding significance for the formulation of work plan, which is related to assets arrival, verification, distribution, warehousing and so on. Based on the CART algorithm, this paper establishes and optimizes the decision tree by analyzing multiple attributes related to power meter fault. The fault probability is given, which provides the theoretical basis and data model for continuation of this work.
出处 《电力大数据》 2017年第10期7-10,60,共5页 Power Systems and Big Data
关键词 电能表 决策树 故障概率 power mete decision tree fault probability
  • 相关文献

参考文献4

二级参考文献23

  • 1王永林.学生评教的特性及其影响因素初探[J].教育科学,2005,21(1):28-30. 被引量:77
  • 2杨族桥,高汉平,徐小双,余志超.顾及粗糙集理论的CART改进算法及其应用[J].黄冈师范学院学报,2006,26(3):38-41. 被引量:2
  • 3HAN J,KAMBER M.Data mining concepts and techniques[M]. SanFrancisco:Morgan Kaufmann Publishers,2001 : 185-219.
  • 4张松林.CART-分类与回归树方法介绍[J].火山地质与矿产,1997,18(1):67-75. 被引量:23
  • 5MACKANESS W, EDWARDS G. The Importance of Modeling Pattern and Structures in Automated Map Generalization[C]//Proceedings of the Joint ISPRS/ICA Workshop on Multi-scale Representations of Spatial Data. Ottawa:[s. n. ], 2002.
  • 6ZHANG Qingnian. Modeling Structure and Patterns in Road Network Generalization [C] // Proceedings of ICA Workshop on Generalization and Multiple Representation. Leicester: [s. n. ], 2004.
  • 7HEINZLE F, ANDERS K H, SESTER M. Graph Based Approaches for Recognition of Patterns and Implicit Information in Road Networks [C]//Proceedings of the 22nd International Cartographic Conference. La Coruna: [s. n. ], 2005.
  • 8HEINZLE F, ANDERS K H. Characterising Space via Pattern Recognition Techniques: Identifying Patterns in Road Networks[C]//Generalisation of Geographic Infor- mation: Cartographic Modelling and Applications. [S. l. ] : Elsevier Ltd, 2007: 233-253.
  • 9YANG Bisheng, LUAN Xuechen, LI Qingquan. An Adaptive Method for Identifying the Spatial Patterns in Road Networks [ J ]. Computers, Environment and Urban Systems, 2010, 34(1): 40-48.
  • 10ROSIN P L. Measuring Rectangularity [J]. Machine Vision and Application, 1999, 11(4): 191-196.

共引文献59

同被引文献89

引证文献8

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部