摘要
超大断面小净距地下储气库洞室群开挖爆破工程中涉及到众多的影响因素,传统人工智能方法难以对爆破峰值振动速度准确预测。为了提高预测精度,引入粒子群算法,对传统的最小二乘支持向量机模型(LS-SVM)进行优化并建立粒子群最小二乘支持向量机爆破峰值振动速度预测模型(PSO-LSSVM)。以某地下储气库洞室群开挖爆破工程为研究对象,应用PSO-LSSVM模型,将PSO-LSSVM模型与LS-SVM模型、萨道夫斯基经验公式的预测结果进行对比,得到三种预测的结果平均绝对相对误差分别为:5.50%、8.56%、23.45%。由此可见,PSO-LSSVM模型的预测结果与实测数据拟合度更高,精确度更满足工程需求,可为多因素作用下类似工程爆破峰值振动速度预测提供借鉴。
There are many influencing factors on the excavation blasting engineering of the underground gas storage caverns with large cross-section and small clear distance, and it is difficult for traditional artificial intelligence method to accurately predict the peak blasting vibration velocity. In order to improve the prediction accuracy, the particle swarm algorithm was used to optimize the traditional least squares support vector machine model and to establish the particle swarm least squares support vector machine blasting peak vibration velocity prediction model. By compa- ring with the forecasted result, the average absolute relative error of three models including PSO LSSVM, LS-SVM and Sodev's empirical formula were 5.50%, 8.56% ,23.45%, respectively. Therefore, the prediction results of PSO LSS- VM model have higher fitting degree with the measured data, and the accuracy is in line with the engineering require- ments, which provides reference to predict the blasting vibration peak velocity of the similar projects under the muti- factor influence.
出处
《爆破》
CSCD
北大核心
2017年第3期145-150,共6页
Blasting
基金
国家自然科学基金资助项目(41672260)
中国地质大学(武汉)教学实验室开放基金资助项目(SKJ2014061
SKJ2016091)
关键词
地下储气库洞室群
最小二乘支持向量机
粒子群算法
爆破峰值振动速度
影响因素
underground gas storage caverns
least squares support vector machine
particle swarm optimization
peak blasting vibration velocity
influence factors