期刊文献+

基于卡尔曼滤波的动态权值融合 被引量:14

Dynamic weighting fusion based on Kalman filter
下载PDF
导出
摘要 在雷达航迹融合过程中,采用多传感器测量值融合的方法能够摒除单一信息源不全面的缺点.加权平均融合为广泛使用的融合方法,但传统的权值固定的加权平均融合虽然能综合多路传感器信息,却无法自适应的根据测量值优劣倚重更有利的测量信息.因此,本文提出将固定权值改进为动态权值的融合方法,实时改变各路测量信息参与融合的权重.每次融合前,先将多路传感器测量值求简单算术平均后进行卡尔曼滤波,把滤波后的值与各路测量值作差,这相当于对传感器信息的优劣作出预判,每路测量信息的融合权值则与该差绝对值成反比.最后,通过仿真实验证明,该改进方法较之前的加权平均融合明显提高了目标的融合精度. Multiple sensor measurement fusion can strip away the shortcomings of a single source which the information is not comprehensive in the process of radar track fusion. Weighted average fusion is widely used. The weighted average fusion of traditional and weights fixed can only combine with infor- mation from multiple sensors, but not pick out better information adaptively. Therefore, this paper sug- gests changing the fixed weight to dynamic weight. Before every fusion, calculating simple arithmetic average of multiple sensor measurements, then performing Kalman filter. Making the measurements subtract the values from Kalman filter. That is equivalent to make prediction for distinguishing data of stand or fall. And the dynamic weight is inversely proportional to the value using for prediction. Final- ly, the simulation experiments prove that the method in this paper can improve the precision of the fu- sion of target significantly.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第5期947-952,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家空管科研课题(GKG201403001)
关键词 航迹融合 加权平均 动态权值 卡尔曼滤波 Track fusion Weighted average Dynamic weight Kalman filter
  • 相关文献

参考文献12

二级参考文献145

  • 1巴宏欣,赵宗贵,杨飞,董强,张涛.机动目标的模糊自适应跟踪算法[J].系统仿真学报,2004,16(6):1181-1183. 被引量:30
  • 2刁联旺,杨静宇.一种改进的机动目标“当前”统计模型的描述[J].兵工学报,2005,26(6):825-828. 被引量:23
  • 3李辉,程琤,张安,沈莹.基于反馈结构的多传感器自适应航迹融合算法[J].计算机学报,2006,29(12):2232-2237. 被引量:6
  • 4Bar-Shalom Y. On hierarchical tracking for the real world[J]. IEEE Trans. on Aerospace and Electronic Systems. 2006. 42 (3): 846 - 850.
  • 5Saha R K, Chang K C. An efficient algorithm for muhisensor track fusion[J]. IEEE Trans. on.Aerospace and Electronic Systems, 1998, 34(1): 200 210.
  • 6Chang K C, Saha R K, Bar-Shalom Y. On optimal track-to-track fusion[J]. IEEE Trans. on Aerospace and Electronic Systems, 1997, 33(4): 1271 - 1275.
  • 7Chen H, Kirubarajan T, Bar-Shalom Y. Performance limits of track-to track fusion versus centralized estimation :theory and application[J]. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39(2):386 - 400.
  • 8Chang K C, Tian Z, Saha R K. Performance evaluation of track fusion with information matrix filter[J]. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38(2): 455-466.
  • 9Qiao X D, Chang K C. Information matrix fusion with feedback ver sus number of sensors[C],//Proc, of 7th lnternatio,al Conf. on Information Fusion, Stockholm, Sweden, 2004:686- 692.
  • 10Juiler S, Uhlamann J. General decentralized data fusion with covariance intersection[C]//Handbook of Multiserasor Data Fusion, Boca Raton, CRC Press, 2001.

共引文献162

同被引文献109

引证文献14

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部