摘要
在车牌字符识别的某些场合中,获得的字符通常存在切割不均匀、光照对比度强烈、遮挡严重等强噪声污染.针对被强噪声污染的数字字符,提出一种基于Caffe深度学习框架的字符识别算法,在Caffe框架下搭建卷积神经网络,并对网络参数训练获得了一个鲁棒性强、识别精度高的网络结构.实验结果表明,在低噪声、中度噪声、强噪声污染情况下,文章中提出的方法相比当前典型的识别方法,在数字字符识别上均具有较好的识别能力,平均识别率高出将近5%,而在强噪声污染情况下,识别效果具有更加明显的优势.
In some license plate character recognitionoccasions, strong noises such as uneven cutting, strong illumination contrast and occlusionare inevitable. To solve this problem effectively, a character recognition algorithm based on Caffe deep learning framework was proposed in this paper. The convolutional neural network was built in the Caffe framework, and the network parameters were trained to obtain a network structurewith high accuracyandrobustness. Experiment results showed that the proposed- algorithmhas obvious advantages, the average recognition ratewasabout 5 % higher when compared with the traditional digital character recognition method. And when there are strong noise pollution exists, the recognition results are better.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第5期971-977,共7页
Journal of Sichuan University(Natural Science Edition)
基金
湖南省自然科学基金项目(2017JJ3099
2016JJ2064)
湖南省科技计划项目(2016TP1021)
湖南省研究生创新项目(CX2016B670)
湖南省教育厅科学研究项目(16C0723)
关键词
Caffe框架
车牌字符识别
深度学习
卷积神经网络
Caffe framework
License plate character recognition
Deep learning
Convolutional neural network