期刊文献+

3种典型叠氮胺类化合物的生成焓计算 被引量:2

Calculation for enthalpies of formation of three typical amine azide compounds
下载PDF
导出
摘要 采用Gaussian09的密度泛函方法 B3LYP,联合6–31G(d)基组对N,N–二甲基–2–叠氮乙胺(DMAZ)、N,N–双叠氮乙基甲胺(BAZ)、三叠氮乙胺(TAEA)进行了分子结构优化、振动分析以及单点能计算,并基于原子化反应的方法计算了3种叠氮胺类化合物的标准摩尔生成焓。计算结果分别为–333.99、–603.68、–914.19 k J/mol,与实验值相比较,误差分别为+15.03、+17.79、+26.79 k J/mol。计算结果验证了DMAZ、BAZ、TAEA均具有较高的生成焓,同时证明了B3LYP/6–31G(d)是较为可行的生成焓计算方法,可应用于其他叠氮胺类化合物的生成焓计算。 Using the density functional method B3LYP of the Gaussian09 combined with 6-31G(d) group, the mo- lecular structure optimization, vibration analysis and single point energy calculation of 2-azido-N,N-dimethylethana- mine (DMAZ), N,N-bis(azidoethyl)-methylamine (BAZ) and triazidoethylamine (TAEA) were carried out, and the stan- dard molar enthalpies of formation of three amine azide compounds were calculated based on the atomization reaction method. The calculated results are -333.99, -603.68, -914.19 kJ/mol respectively. Comparing with the experimental values, the errors are +15.03, +17.79, +26.79 kJ/mol respectively. The calculated results confirm that DMAZ, BAZ, TAEA all possess higher enthalpies of formation and prove that the B3LYP/6-31G(d) is a relatively feasible calculation method for enthalpy of formation and can be used to calculate enthalpies of formation of the other amine azide compounds.
机构地区 火箭军工程大学
出处 《化学推进剂与高分子材料》 CAS 2017年第5期63-66,共4页 Chemical Propellants & Polymeric Materials
关键词 叠氮胺 原子化反应 生成焓 amine azide atomization reaction enthalpy of formation
  • 相关文献

参考文献4

二级参考文献52

  • 1徐武,王煊军,刘祥萱,李正莉.含能粘合剂研究的新进展[J].火箭推进,2007,33(2):44-47. 被引量:22
  • 2Redfern P C,Zapol P,Curtiss L A. J Pbys Chem A[J] ,2000,104:5 850.
  • 3Bond D. J Phys Chem A[J] ,2008,112:1 656.
  • 4Alkorta 1, Elguero J. Chem Phys Lett [ J ] ,2006,425 : 221.
  • 5DiLabio G A,Pratt D. J Phys Chem A[J] ,2000,104:1 938.
  • 6Frisch M J ,Trucks G W,Schlegel H B,Scuseria G E,Robb M A,Cheeseman J R, Montgomery J A,Jr T V,Kudin K N, Burant J C,Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P,Cross J B,Adamo C, Jaramillo J,Gomperts R,Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J,Stefanov B B,Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T,Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C,Pople J A Gaussian 03 Revision E 01 ,Gaussian Inc : Pittsburgh PA 2007.
  • 7Scott A P,Radom L. J Phys Chem A[J] ,1996,100:16 502.
  • 8Zhao Y,Truhlar D G. J Chem Theory Comput[ J] ,2005,1:415.
  • 9Hamprecht F A, Cohen A J,Tozer D J, Handy N C. J Chem Phys [ J ], 1998,109:6 264.
  • 10Zhao Y,Pu J,Lynch B J,Truhlar D G. Phys Chem Chem Phys[J] ,2004,6:673.

共引文献22

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部