期刊文献+

一种新的避免航迹合并的联合综合概率数据关联滤波器

Novel Track Coalescence Avoiding Joint Integrated Probabilistic Data Association Filter
下载PDF
导出
摘要 针对联合综合概率数据关联算法(JIPDA)存在的航迹合并问题,将目标建模为随机有限集(RFS)提出改进的JIPDA算法。传统JIPDA首先产生初始概率密度函数(PDF),之后对该PDF进行近似来估计目标状态。为了使目标状态估计PDF与初始PDF之间的相似性最大化,当目标标签无意义时,提出对JIPDA的初始PDF进行优化。将KL散度作为相似性的衡量标准,建立起优化过程的代价函数。仿真实验表明,所提方法可有效地抑制传统JIPDA引起的航迹合并。 To avoid the track coalescence of the Joint Integrated Probabilistic Data Association (JIPDA), a modified version of JIPDA is proposed by modelling targets as Random Finite Set (RFS). The JIPDA first generates the original Probability Density Fhnction (PDF) and then makes an approximation of the PDF to estimate target states. To maximize the similarity between the state estimate PDF and the original PDF, the original PDF is optimized when target label is irrelevant. Using the KL divergence as a measure of the similarity, the cost function is developed. The experimental results show that the proposed method can effectively avoid the track coalescence.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第10期2346-2353,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61401526) 国家部委共用技术基金(9140A07020614DZ01)~~
关键词 多目标跟踪 联合综合概率数据关联 随机有限集 Multi-target tracking Joint Integrated Probabilistic Data Association (JIPDA) Random Finite Set (RFS)
  • 相关文献

参考文献3

二级参考文献30

  • 1GOLDBERGER J, GORDON S, GREENSPAN H. An efficient im- age similarity measure based on approximations of KL-divergence be- tween two Gaussian mixture [ C]// Proceedings of the 2003 IEEE International Conference on Computer Vision. Piscataway, N J: IEEE Press, 2003:487 -493.
  • 2CARSON C, BELONGIE S, GREENSPAN H, et al. Blobworld: image segmentation using expectation-maximization and its applica- tion to image querying [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(8) : 1026 - 1038.
  • 3LIU Y, PERRONNIN F. A similarity measure between unordered vector sets with application to image categorization [ C]// Proceed- ings of the 26th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE Press, 2008:1-8.
  • 4LUSZCZKIEWICZ-PIATEK M, SMOLKA B. Effective color image retrieval based on the Gaussian mixture model [ C]//Proceedings of the 3rd International Workshop on Computational Color Imaging. Berlin: Springer, 2011:199-213.
  • 5GREENSPAN H. Medical image categorization and retrieval for PACS using the GMM-KL framework [ J]. IEEE Transactions on In- formation Technology in Biomedicine, 2007, 11 (2) : 190 - 202.
  • 6HELEN M, VIRTANEN T. Query by example of audio signals using Euclidean distance between Gaussian mixture models [ C ]// Pro- ceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE Press, 2007: 1225 - 1228.
  • 7TURNBULL D, BARRINGTON L, TORRES D, et al. Semantic annotation and retrieval of music and sound effects [ J]. IEEE Trans- actions on Audio, Speech and Language Processing, 2008, 16( 2): 467 - 476.
  • 8WANG J, YANG Y, WANG H, et al. The acoustic emotion Ganss- ians model for emotion-based music annotation and retrieval [ C]// Proceedings of the 20th ACM International Conference on Multimedi- a. New York: ACM Press, 2012:89-98.
  • 9VASCONCELOS N. On the efficient evaluation of probabilistic simi- larity functions for image retrieval [ J]. IEEE Transactions on Infor- mation Theory, 2004, 50(7) : 1482 - 1496.
  • 10VASCONCELOS N, HO P, MORENO P. The Kullback-Leibler kernel as a framework for discriminant and localized representations for visual recognition [ C]// ECCV 2004: Proceedings of the 8th European Conference on Computer Vision, LNCS 3023. Berlin: Springer, 2004:430-441.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部