期刊文献+

粗糙集和熵权计算法在多因素指标评价中的应用 被引量:8

Application of rough set and entropy weight calculation method in the multi-factor index evaluation
下载PDF
导出
摘要 为了提高分析多因素指标评价中核心因素选取和权重计算的准确性,根据粗糙集处理数据的特点,以及熵权法计算权重的客观性,提出将粗糙集和熵权计算法结合进行核心因素选取和指标权重的计算。以土壤腐蚀多因素指标评价为例,针对其粗糙集应用中离散化数据时的失值问题,以及熵权计算法中无量纲化处理时标准的不统一,提出了土壤腐蚀等级的分类离散化方法和熵权计算法中无量纲化的同级变换公式,结果得到了2种方法计算数值的相互验证,增加了针对指标权重分析的应用性和可靠性。 In order to improve the accuracy of the core factors selection and the weight calculation in the multi-factor index evaluation,the method that combined rough set and entropy weight calculation for the core factors selection and index weight calculation was put forward based on the characteristics of rough set to deal with data and the objectivity of entropy weight method to calculate the weight. Taking the multi-factor index evaluation of the soil corrosion as example,aiming at the problem of lost value when discretizing the data in the rough set application and the problem of non-uniform standard during the dimensionless processing in the entropy weight calculation method,the classification discretization method of soil corrosion grade and the same level conversion formula of non-dimensionalization in the entropy weight calculation method were put forward. The mutual verification of the calculation results by these two methods was obtained,which increases the applicability and reliability for the index weight analysis.
作者 赵志峰 文虎 樊恒 朱凯然 ZHAO Zhifeng WEN Hu FAN HengI ZHU Kairan(School of Electronic Engineering, Xi'an Shiyou University, Xi'an Shaanxi 710065, China College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an Shaanxi 710054, China)
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2017年第9期180-184,共5页 Journal of Safety Science and Technology
基金 陕西省教育厅专项科研计划项目(15JK1592) 中国石油科技创新基金研究项目(2014D-5006-0605)
关键词 多因素指标评价 核心因素 粗糙集 熵权计算法 multi-factor index evaluation core factor rough set entropy weight calculation method
  • 相关文献

参考文献11

二级参考文献121

共引文献81

同被引文献79

引证文献8

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部