期刊文献+

基于特征融合的多约束非负矩阵分解算法 被引量:2

Multi-constraint nonnegative matrix factorization algorithm based on feature fusion
下载PDF
导出
摘要 针对非负矩阵分解后数据的稀疏性降低、单一图像特征不能够很好地描述图像内容的问题,提出一种基于特征融合的多约束非负矩阵分解算法。该算法不仅考虑了少量已知样本的标签信息和稀疏约束,还对其进行了图正则化处理,而且将分解后的具有不同稀疏度的图像特征进行了融合,从而增强了算法的聚类性能和有效性。在Yale-32和COIL20数据集上进行的对比实验进一步验证了该算法具有更好的聚类精度和稀疏性。 Focusing on the issues that the sparseness of data is reduced after factorization and the single image feature cannot describe the image content well, a multi-constraint nonnegative matrix factorization based on feature fusion was proposed. The information provided by few known labeled samples and sparseness constraint were considered, and the graph regularization was processed, then the decomposed image features with different sparseness were fused, which improved the clustering performance and effectiveness. Extensive experiments were conducted on both Yale-32 and COIL20 datasets, and the comparisons with four state-of-the-art algorithms demonstrate that the proposed method has superiority in both clustering accuracy and sparseness.
出处 《计算机应用》 CSCD 北大核心 2017年第10期2834-2840,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61572214) 辽宁省高等学校优秀人才支持计划项目(LR2015030)~~
关键词 非负矩阵分解 标签信息 稀疏约束 图正则 特征融合 Non-negative Matrix Factorization (NMF) label information sparseness constraint graph regularization feature fusion
  • 相关文献

参考文献9

二级参考文献109

  • 1陈卫刚,戚飞虎.可行方向算法与模拟退火结合的NMF特征提取方法[J].电子学报,2003,31(z1):2190-2193. 被引量:6
  • 2顾华,苏光大,杜成.人脸关键特征点的自动定位[J].光电子.激光,2004,15(8):975-979. 被引量:16
  • 3LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:22
  • 4L Sirovich,M Kirby. Appfication of Karhunen-Loeve procedure for the characterization of human faces[ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 1990,3( 1 ) :71 - 79.
  • 5M Turk, A Pentland. Eigenfaces for recognition[ J]. Journal of Cognitive Neuroscience, 1991,3( 1 ) : 72 - 86.
  • 6D L Swets, J Y Weng. Using discriminant eigenfeatures for image retdeval[ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 1996,18(8) : 831 - 836.
  • 7P N Belhumeur, J P Hespanha, D J Kriegman. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection[ J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1997,19 (7) :711 - 720.
  • 8Z M Hafed, M D Levine. Face recognition using the discrete cosine transform[ J ].International Journal of Computer Vision, 2001,43(3) : 167 - 188.
  • 9D Ramasubramanian, Y V Venkatesh. Encoding and recognition of faces based on the human visual model and DCT[ J]. Pattern Recognition, 2001,34(12) :2447 - 2458.
  • 10W Chen, J E Meng, S Wu. PCA and LDA in DCT domain [ J]. Pattern Recognition Letters,2005,26(15) :2474 - 2482.

共引文献188

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部