期刊文献+

蚁群算法与遗传算法在TSP中的对比研究 被引量:10

A Comparision Research between Ant Algorithm and Genitic Algorithm for TSP
下载PDF
导出
摘要 本文首先论述了求解TSP的基本原理,建立了TSP的数学模型,应用Matlab对传统蚁群算法和传统遗传算法求解TSP进行了对比研究.实验结果表明,当城市个数较少,距离较近时,蚁群算法和遗传算法均能找到最优解,且蚁群算法收敛速度快.当城市个数较多且距离较远时,运用本文中的算法,蚁群算法仍然能找到最优解,而遗传算法没有最优解. In this paper, the basic theory of solving TSP is discussed, and then the mathematical model ot TSP is established. Using Matlab, a contrastive study is carried out between the traditional ant colony algorithm and the traditional genetic algorithm for solving TSP. The experimental results show that the ant colony algorithm and genetic algorithm can find the optimal solution when the number of cities is small and the distance is close, and the ant colony algorithm has a fast convergence speed. When the number of cities is large and the distance is far, the ant colony algorithm can find the optimal solution using our algorithm, however, the genetic algorithm has no optimal solution.
出处 《山西师范大学学报(自然科学版)》 2017年第3期34-37,共4页 Journal of Shanxi Normal University(Natural Science Edition)
基金 山西师范大学2014年建设课程组项目(SD2014KCZ-07) 山西师范大学教改项目(SD2015JGKT-24)
关键词 蚁群算法 遗传算法 TSP ant colony algorithm genetic algorithm TSP ( Traveling salesman problem)
  • 相关文献

参考文献3

二级参考文献29

共引文献409

同被引文献105

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部