期刊文献+

Effect of strain-induced martensitic phase transformation on the formability of nitrogen-alloyed metastable austenitic stainless steels 被引量:1

Effect of strain-induced martensitic phase transformation on the formability of nitrogen-alloyed metastable austenitic stainless steels
下载PDF
导出
摘要 Strain-induced martensitic phase transformation and its influence on the forrnability of newly developed nitrogen-alloyed metastable austenitic stainless steels were systematically investigated. Yield strength for the as- received steels bearing low nickel content was around 300 MPa and their elongation ratios varied from 55.2% to 61.7%. Erichsen numbers of these samples differed from 13.82 to 14.57 mm. Although its Cu content was lower than that of other samples, steel D2 exhibited better plasticity and formability, which was attributed to ~/--,c~' martensitic phase transformation. EBSD, XRD, and magnetism tests showed that increases in deformation ratio gradually increased the α' martensite phase of a sample ,thereby contributing to its strain and inducing the optimal transformation-induced plasticity effect. An Meeo/5o temperature of around 20 ℃, which is close to the deformation temperature,provided the austenite with adequate stability and gradually transformed it into martensite, thereby endowing lean ASS with better formability. Strain-induced martensitic phase transformation and its influence on the forrnability of newly developed nitrogen-alloyed metastable austenitic stainless steels were systematically investigated. Yield strength for the as- received steels bearing low nickel content was around 300 MPa and their elongation ratios varied from 55.2% to 61.7%. Erichsen numbers of these samples differed from 13.82 to 14.57 mm. Although its Cu content was lower than that of other samples, steel D2 exhibited better plasticity and formability, which was attributed to ~/--,c~' martensitic phase transformation. EBSD, XRD, and magnetism tests showed that increases in deformation ratio gradually increased the α' martensite phase of a sample ,thereby contributing to its strain and inducing the optimal transformation-induced plasticity effect. An Meeo/5o temperature of around 20 ℃, which is close to the deformation temperature,provided the austenite with adequate stability and gradually transformed it into martensite, thereby endowing lean ASS with better formability.
机构地区 Research Institute
出处 《Baosteel Technical Research》 CAS 2017年第3期18-23,共6页 宝钢技术研究(英文版)
基金 sponsored by Shanghai Rising-Star Program with No.17QB1400100
关键词 nitrogen-alloyed austenitic stainless steel FORMABILITY martensitic phase transformation STABILITY nitrogen-alloyed austenitic stainless steel formability martensitic phase transformation stability
  • 相关文献

参考文献1

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部