期刊文献+

群控电梯调度效率优化设计 被引量:1

Optimization Design on Group Control Elevator Scheduling Efficiency
下载PDF
导出
摘要 在对电梯群控系统的结构特性、工作原理以及该技术最新发展概况综述的基础上,对电梯群控系统研究中的控制算法、控制策略的采用、实施的效果和存在的问题等进行了详细分析。群控电梯调度效率的优化旨在提高电梯组的工作效率和降低能耗,传统逻辑控制算法控制效果不够理想,而随着人工智能算法的出现,将智能算法应用到群控调度策略将成为一种趋势。针对可编程逻辑控制器计算能力偏弱,而传统的智能算法计算量过于庞大难以与控制器相结合的问题,设计基于蚁群算法的控制策略,通过对比传统的调度策略体现出该算法的优势,在实物仿真系统上的验证实现证明了基于可编程逻辑控制器的智能调度策略的有效性和可行性。 This paper .summarizes the strucural characteristics, operating principle of elevator group control system and the latest development situation of this technology, and analyzes in depth the application, implementation effectiveness and existing problems of control algorithm and control strategy in elevator group control system. The optimization of elevator group control dispatching efficiency is to improve the work efficiency and reduce energy consunlption of the elevator group. The control effect of traditional logic control algorithm is not ideal, the gradual development of the artificial intelligence algorithm makes its application in group control scheduling policy become a trend. For these problems that the calculation ability of progranmlable logic controller is weak, and the traditional intelligent algorithm is difficult to combine with a controller because of too heavy calculation amount, the control strategy based on ant colony algorithm is designed. Comparing with the traditional scheduling policy, this algorithm has significant superiority. The experimental results of physical simulation system prove the effectiveness and feasibility of intelligent scheduling strategy based on progranmmable logic controller.
作者 田海 杨利宇 TIAN Hai YANG Li-yu(School of Information Engineering, Inner Mongolia University of Science & Technology, Baotou Inner Mongolia 014010, China)
出处 《计算机与网络》 2017年第17期66-69,共4页 Computer & Network
基金 内蒙古自治区自然科学基金资助项目(2017MS0603)
关键词 群控调度 人工智能 蚁群算法 实物仿真 群控电梯 调度优化 group scheduling artificial intelligence ant colony algorithm physical sinmlation group control elevator scheduling optimization
  • 相关文献

参考文献6

二级参考文献33

  • 1胡小兵,袁锐,黄席樾,易继军.蚁群算法原理的仿真研究[J].计算机仿真,2004,21(8):125-128. 被引量:16
  • 2许玉格,罗飞,曹建忠.目的层预约的模糊神经网络电梯群控策略[J].华南理工大学学报(自然科学版),2007,35(1):13-18. 被引量:15
  • 3朱德文;付国江.电梯群控技术[M]{H}北京:中国电力出版社,20066-8.
  • 4段海滨.蚁群算法原理及其应用[M]{H}北京:科学出版社,200524-43.
  • 5夏玮;李朝晖;常春藤.MATLAB控制系统仿真与实例详解[M]{H}北京:人民邮电出版社,2008295-330.
  • 6刘刚;王立香;张连俊.LabVIEW8.20中文版编程及应用20中文版编程及应用[M].{H}北京:电子工业出版社,2008374-375.
  • 7TAI J Z,YANG S Y,TAN H. Dispatching approach optimization of elevator group control system with destination floor guidance usingfuzzy neural network[A].{H}IEEE,2008.7085-7088.
  • 8BARNEY G,SANTOS S D. Elevator traffic analysis,design and control[M].Stevenage,U.K:Peregrinus,1985.
  • 9LEE S,BAHN H. An energy-aware elevator group control system[A].{H}IEEE,2005.639-643.
  • 10DORIGO M,CARO G D,GAMBARDELLA L M. Ant algorithms for discrete optimization[J].{H}ARTIFICIAL LIFE,1999,(02):137-172.

共引文献30

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部