期刊文献+

高精度HWENO格式与浸入边界法求解可压缩流问题 被引量:1

High Order HWENO Scheme with Immersed Boundary Method for Compressible Flow Problems
下载PDF
导出
摘要 在物面边界处采用浸入边界法并构造三阶有限体积HWENO(Hermite Weighted Essentially Non-oscillatory)格式,可在较简单的笛卡尔网格上有效处理上述带复杂物面边界的可压缩流动问题。经典的定常和非定常数值算例验证了该方法的有效性。 The immersed boundary method is employed at the body surface and a third order finite volume HWENO (Hermite weighted essentially non-oscillatory) scheme is constructed in this paper,and the above mentioned problems containing complex body surface could be effectively solved on Cartesian meshes.Some benchmark steady/unsteady examples are represented to illustrate the good performance of such methods.
出处 《青岛大学学报(自然科学版)》 CAS 2017年第3期4-10,共7页 Journal of Qingdao University(Natural Science Edition)
基金 国家自然科学基金(批准号:11372005 11432007 91530325)资助
关键词 有限体积HWENO格式 浸入边界方法 可压缩流动问题 笛卡尔网格 finite volume HWENO scheme immersed boundary method compressible flow problem Cartesian grid
  • 相关文献

参考文献1

二级参考文献18

  • 1Harten A.High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics . 1983
  • 2Harten A.Preliminary results on the extension of ENO schemes to two-dimensional problems. Proceedings of International Conference on Nonlinear Hyperbolic Problems . 1987
  • 3Casper J.Finite-volume implementation of high-order essentially nonoscillatory schemes in two dimensions. AIAA Journal . 1992
  • 4Abgrall R.On essentially non-oscillatory schemes on unstructured meshes:Analysis and implementation. Journal of Computational Physics . 1994
  • 5Jiang G S,Shu C W.E?cient implementation of weighted ENO schemes. Journal of Computational Physics . 1996
  • 6Qiu J,Shu C W.Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method:one-dimensional case. Journal of Computational Physics . 2004
  • 7Qiu J,Shu C W.Hermite WENO schemes and their application as limiters for Runge-Kutta discontiuous Galerkin method II:two dimensional case. Computers and Fluids . 2005
  • 8Shu C W.Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic con-servation laws. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations.A .
  • 9Shu C W,Osher S.E?cient implementation of essentially non-oscillatory shock capturing schemes. Journal of Computational Physics . 1988
  • 10Lax P D,Liu X D.Solution of two dimensional Riemann problems of gas dynamics by positive schemes. SIAM Journal on Scientific Computing . 1998

共引文献6

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部