摘要
对于一个图G,它的顶点标号为1,2,…,n,S_n是在{1,2,…,n}上的n次对称群,α∈S_n是一个置换,图G的α-广义棱柱,记作α(G),是指图G的2个复制,G_x和G_y,连同所有置换边(x_i,y_(α(i))(1≤i≤n)所构成的图.图G的补棱柱,记作G G,同构于由G和G的补图G的不交并,再加上一个连接G和G对应顶点的完美匹配构成的图.如果图G有一个生成欧拉子图,那么称G是超欧拉图.研究了完全二部图、路和圈的广义棱柱和补棱柱是超欧拉图的充要条件.
For a graph G with vertices labeled 1,2,丨,n,a permutation a in S_n,the symmetric group on { 1,2,丨,n},and the a-generalized prism over G,a(G),they consist of two copies of,G say Gxand Gy,along with the edges( x_i,y_(a(i))). The complementary prism GG is isomorphic to the graph that arises from the disjoint union of G and the complement G of G by adding a perfect matching joining corresponding pairs of vertices in G and G. A graph is called supereulerian if it has a spanning eulerian subgraph. This paper investigates the necessary and sufficient conditions for the generalized prisms and complementary prisms of the complete bipartite graphs,paths and circles to be supereulerian graphs.
出处
《云南民族大学学报(自然科学版)》
CAS
2017年第5期376-380,共5页
Journal of Yunnan Minzu University:Natural Sciences Edition
基金
国家自然科学基金(11501341
11401353
11671296)
关键词
广义棱柱
补棱柱
超欧拉图
可折图
generalized prisms
complementary prisms
supereulerian graphs
collapsible graphs