期刊文献+

Mapreduce模型及支撑系统概述

Overview graphs model and support system
下载PDF
导出
摘要 MapReduce是由并行编程模型及相关支撑系统组成的数据处理框架,通过定义接口和运行时支持库,通过定义良好的接口和运行时支持库,能够自动并行执行大规模计算任务,通过隐藏底层实现细节,降低实现并行编程的难度,Hadoop是目前MapReduce框架最流行的开源实现。文章首先介绍了MapReduce并行编程模型及其hadoop的运行原理、运行机制,深入研究了MapReduce计算任务在Hadoop系统中的运行过程。 MapReduce is composed of parallel programming model and its support system data processing framework,through the definition of interface support library and runtime support library,through the definition of a good interface and operation,capable of automatic parallel execution of large-scale computing tasks,by hiding the underlying implementation details,reduce the difficulty of parallel programming,Hadoop is currently the most popular MapReduce framework open source implementation.Firstly,this paper introduces the MapReduce parallel programming model and the operation principle and operation mechanism of Hadoop,and deeply studies the operation process of MapReduce computing task in Hadoop system.
作者 李炜 贺丽娟
出处 《电子测试》 2017年第9期77-78,共2页 Electronic Test
关键词 大数据 MAPREDUCE HADOOP HDFS big data graphs hadoop HDFS
  • 相关文献

参考文献1

二级参考文献31

  • 1李国杰.大数据研究的科学价值.中国计算机学会通讯,2012,8(9):8—15.
  • 2Ghemawat S, Gobioff H, Leung ST. The Google file system. ACM SIGOPS Operating Systems Review. ACM. 2003, 37(5): 29-43.
  • 3Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. Communications of the ACM, 2008, 51(1): 107-113.
  • 4Chang F, Dean J, Ghemawat S, et al. Bigtable: A distributed storage system for structured data. Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. 2006. 205-218.
  • 5TomWhite著.周敏奇,王晓玲,金澈清等译.Hadoop权威指南(第二版).北京:清华大学出版社,2011.
  • 6Shvachko K, Kuang H, Radia S, et al. The Hadoop distributed file system. Mass Storage Systems and Technologies (MSST). 2010 IEEE 26th Symposium on. IEEE. 2010. 1-10.
  • 7IDC发布最新《数字宇宙研究报告》.http://www.ecas.cn/xxkw/kbcd/201115-93655/ml/xxhjsyjcss/201212/t20121229_3730152.html.
  • 8Bu Y, Howe B, Balazinska M, et al. HaLoop: Efficient iterative data processing on large clusters. Proc. of the VLDB Endowment, 2010, 3(1-2): 285-296.
  • 9Ekanayake J, Li H, Zhang B, et al. Twister: A runtime for iterative mapreduce. Proc. of the 19th ACM [ntemational Symposium on High Performance Distributed Computing. ACM. 2010. 810-818.
  • 10Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. Proc. of the 9th USENIX Conference on Networked Systems Design and Implementation. USENIX Association. 2012.2-2.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部