期刊文献+

基于多光源模型的夜晚雾天图像去雾算法 被引量:3

Nighttime Image Defogging Based on Multiple Light Source Model
下载PDF
导出
摘要 依据夜间多光源导致强光处能见度低的现象,在传统大气散射模型中定义发光因子项,构建了一个专门针对夜晚雾天图像的去雾模型,在此基础上提出了一种夜晚雾天图像去雾算法.该算法将原输入图像分解为新雾天图像层和发光图像层,然后对此分解得到的新雾天图像层进行色偏纠正和引导滤波操作以得到最终的去雾结果.与暗原色原理方法、快速中值滤波方法、图像颜色迁移方法、夜晚成像模型方法等已有方法的对比实验证实了本文算法的有效性.该算法可应用于汽车防碰撞系统、道路监控系统,以及其他识别系统. Multiple light sources cause the lowvisibility in the brightest region in nighttime images,a glowterm was defined in the traditional atmospheric scattering model. A defogging model was constructed for nighttime foggy images.Based on the model,a nighttime image defogging algorithm was proposed. The algorithm decomposed the original image into a nighttime foggy image layer and a glowimage layer,and then the color-shift correction operation and the guided filter were applied for the foggy image layer. Thus,the defogging results can be obtained. Comparisons with dark channel prior method,fast median filter method,image color transfer method,and nighttime imaging model method verified the effectiveness of the proposed algorithm. This algorithm can be applied in such devices as vehicle collision avoidance systems,traffic surveillance systems,and other recognition systems.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第9期2127-2134,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61502537 No.61573380) 湖南省科技计划重点研发项目(No.2015WK3006) 中南大学博士后基金资助项目(No.126648)
关键词 夜晚 图像 去雾 多光源 发光图像 nighttime image defogging multiple light source glow image
  • 相关文献

参考文献1

二级参考文献13

  • 1Schechner Y Y,Narasimhan S G,Nayar S K.Instant dehazing of images using polarization[C]//Proc of IEEE CVPR'01.Washington:IEEE Computer Society,2001:325-332.
  • 2Shwartz S,Shwart E,Shwart Y Y.Blind haze separation[C]//Proc of IEEE CVPR'06.Washington:IEEE Computer Society,2006:1984-1991.
  • 3Narasimhan S G,Nayar S K.Chromatic framework for vision in bad weather[C]//Proc of IEEE CVPR'00.Washington:IEEE Computer Society,2000:598-605.
  • 4Narasimhan S G,Nayar S K.Contrast restoration of weather degraded images[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(6):713-724.
  • 5Kopf J,Neubert B,Chen B,et al.Deep photo:Model-based photograph enhancement and viewing[C]//Proc of SIGGRAPH Asia 2008.New York:ACM,2008:1-10.
  • 6Narasimhan S G,Chen S K.Interactive deweathering of an image using physical models[C]//Proc of IEEE Workshop on Color and Photometric Method in Computer Vision.Piscataway,NJ:IEEE,2003:1-8.
  • 7Tan R.Visibility in bad weather from a single image[C]//Proc of IEEE CVPR'08.Washington:IEEE Computer Society,2008:1-8.
  • 8Fattal R.Single image dehazing[C]//Proc of SIGGRAPH'08.New York:ACM,2008:1-9.
  • 9He K,Sun J,Tang X O.Single image haze removal using dark channel prior[C]//Proc of IEEE CVPR'09.Washington:IEEE Computer Society,2009:1956-1963.
  • 10Levin A,Lischinski D,Weiss Y.A closed form solution to natural image matting[C]//Proc of IEEE CVPR'06.Washington:IEEE Computer Society,2006:61-68.

共引文献41

同被引文献10

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部