期刊文献+

基于高阶马尔可夫随机场及非线性压缩感知的相位恢复算法 被引量:1

A Phase Retrieval Algorithm Based on Higher-Order Markov Random Fields and Nonlinear Compressed Sensing
下载PDF
导出
摘要 在编码衍射成像系统中,为精确重构复图像的幅值和相位,需获取大量的编码衍射图样,导致数据采集时间长.为减少编码衍射图样的数量,本文基于非线性压缩感知理论框架,利用高阶马尔可夫随机场统计先验模型,提出了一种鲁棒相位恢复算法.该方法将复图像的幅值和相位分别进行正则化,并将数据保真项与幅值和相位正则项结合作为代价函数,采用Heavy-Ball算法求解所对应的非凸优化问题.实验结果表明,本文算法在编码衍射图样较少的情况下仍能获得较高的图像重构质量,且对噪声鲁棒. To enable prefect reconstruction of the magnitude and phase of the complex images in the coded diffraction imaging system,many coded diffraction patterns are required,which leads to time consuming of the sampling process. To reduce the number of coded diffraction patterns,a robust phase retrieval algorithm which exploits the statistical characteristic of the higher-order Markov random fields is proposed based on the nonlinear compressed sensing framework. The presented method regularizes the magnitude and phase separately,and combines the data fidelity term with the regularization terms of the magnitude and phase to formulate the cost function. Moreover,the heavy-ball algorithm is utilized for solving the corresponding non-convex optimization problem. Experimental results showthat the proposed method can achieve high image quality with fewer coded diffraction patterns,and is robust to noise.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第9期2210-2217,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61471313) 河北省自然科学基金(No.F2014203076)
关键词 非线性压缩感知 相位恢复 高阶马尔可夫随机场 编码衍射图样 nonlinear compressed sensing phase retrieval higher-order Markov random fields coded diffraction pattern
  • 相关文献

参考文献1

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献711

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部