期刊文献+

基于RSSI测距模型优化算法研究 被引量:4

Research on Optimization Algorithm of Ranging Model Based on RSSI
下载PDF
导出
摘要 RSSI定位方法已成为近年来研究热点,基于测距的RSSI定位算法本身具有一定缺陷,无线信号在传播过程中由于受到环境中各种高斯白噪声的干扰,致使获取的RSSI值会在某一中心值上下波动,极大影响了定位的实效性、准确性。为提高室内环境的定位精度,提出一种基于RSSI的高斯—卡尔曼滤波优化。先用极大似然估计得出RSSI测距模型的修正参数,然后使用最小二乘法(LSM)初步估计所求定点的坐标,最后利用高斯-卡尔曼滤波对计算出来的定位节点坐标和参数进行优化,利用Matlab实验仿真结果表明,算法具有定位误差小、精度高的明显特点。 The RSSI localization method has become a hot problem in recent years. The RSSI localization algorithm based on ran ging has its own shortcomings. The wireless signal is disturbed by various Gaussian white noise in the environment, The value will fluctuate at a certain center value, greatly affecting the positioning of the effectiveness and accuracy. In order to improve the positioning accuracy of the indoor environment, this paper proposes a Gaussian-Kalman filter optimization based on RSSI. Firstly, the corrective parameters of the RSSI range model are obtained by using the maximum likelihood estimation. The coordinates of the obtained point are estimated by the least squares method (LSM). Finally, the coordinates and parameters of the calculated node areoptimized by indoor,The simulation results show that the algorithm has the characteristics of small positioning error and high precision.
作者 王俭 张轩雄 WANG Jian ZHANG Xuan-xiong(School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, Chin)
出处 《软件导刊》 2017年第10期64-67,共4页 Software Guide
关键词 ZIGBEE 室内定位 高斯-卡尔曼滤波算法 ZigBee indor location Gauss Calman filtering algorithm
  • 相关文献

参考文献4

二级参考文献18

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2段渭军,王建刚,王福豹.无线传感器网络节点定位系统与算法的研究和发展[J].信息与控制,2006,35(2):239-245. 被引量:42
  • 3陈维克,李文锋,首珩,袁兵.基于RSSI的无线传感器网络加权质心定位算法[J].武汉理工大学学报(交通科学与工程版),2006,30(2):265-268. 被引量:207
  • 4Chehri A,Fortier F.On the TOA Estimation for UWB Ranging in Complex Confined Area[C] //Proc.of ISSSE'07.[S.l.] :IEEE Press,2007.
  • 5Rong Peng,Sichitiu M L.Angle of Arrival Localization for Wireless Sensor Networks[C] //Proc.of the 3rd Annual IEEE Communications Society Conference on Sensor,Mesh and Ad Hoc Communications and Networks.Reston,VA,USA:[s.n.] ,2006.
  • 6Bahl P,Padmanabhan V N.RADAR:An In-building RF-based User Location and Tracking System[C] //Proc.of INFOCOM'00.[S.l.] :IEEE Press,2000.
  • 7Cheng Yu-Chung,Chawathe Y.Accuracy Characterization for Metropolitan-scale Wi-Fi Localization[C] //Proc.of the 3rd International Conference on Mobile Systems,Applications,and Services.Seattle,USA:[s.n.] ,2005.
  • 8Awad A, Frunzke T, Dressier F. Adaptive distance estimation and localization in WSNs using RSSI measures[ C]//IEEE 10th Euromicro Conference on Digital System Design Architectures Methods and Tools, Aug. 2007:471 -478.
  • 9Li J, Li J, Cuo L. Power-efficient node localization algorithm in wireless sensor networks [C]//APWeb 2006 International Workshops, Harbin, China ,2006:420-430.
  • 10Ali S, Nobles P. A novel indoor location sensing mechanism for IEEE 802.11 b/g wireless LAN[C]//IEE The Fourth Workshop on Positioning, Navigation and Communication ( WPNC ' 07 ), 2007:9 -15.

共引文献146

同被引文献33

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部