摘要
讨论了一类带分数Brown运动随机固定资产模型数值解的均方散逸性.在漂移系数和扩散系数满足单边Lipschitz条件和有界条件下,建立了随机固定资产模型补偿倒向Euler法数值解均方散逸性的判定准则.最后通过数值算例对结论进行了验证.
In this paper, we introduce a class of compensate backward Euler methods for stochastic capital system with fractional Brownian motion. Under the one-sided Lipschitz condition on the drift coefficient and the bounded condition on the diffusion coefficients, we obtain the mean-square dissipativity of the compensate backward Euler numerical solution of stochastic capital system with fractional Brownian motion. Finally, an example is given for verifying the algorithm of this paper.
出处
《数学的实践与认识》
北大核心
2017年第17期177-183,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(11461053
11661064)