期刊文献+

基于主元分析残差空间的自适应统计方法及其应用 被引量:3

Adaptive Statistical Method in Residual Subspace of PCA-Based and Its Application
下载PDF
导出
摘要 提出一种基于主元分析(PCA)残差空间的自适应统计方法。将原始空间分解为主元空间和残差空间,然后根据残差空间得分变量方差变化趋势,给出由Hotelling’s T^2和欧式距离相结合的自适应统计量T_e^2。将PCA-T_e^2、PCA-Q以及核主元分析(KPCA)-Q等方法应用于田纳西-伊斯曼(TE)过程中,仿真结果表明PCA-T_e^2具有较高的检测性能。 An adaptive statistical method in the residual space of principal component analysis( PCA)-based is proposed in this paper. First,the original space is separated into principal component space and residual space. Next,in residual space,an adaptive statistic variable,Te^2,which is the combination of Hotelling's T^2 and Euclidean distance,is given. The proposed method,PCA-Q and kernal pricipal component analysis( KPCA)-Q are applied to the Tennessee Eastman( TE) process. The comparison of monitoring results shows that the proposed method is superior to PCA-Q and KPCA-Q.
作者 徐涛 张成 李元 逄玉俊 XU Tao ZHANG Cheng LI Yuan PANG Yujun(Research Center for Technical Process Fault Diagnosis and Safety, Shenyang University of Chemical Technology, Shenyang 110142, China College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)
出处 《系统仿真技术》 2017年第3期190-194,共5页 System Simulation Technology
基金 国家自然科学基金(61490701 61673279) 辽宁省教育厅重点实验室项目(LZ2015059) 辽宁省教育厅一般项目(L2015432) 辽宁省自然科学基金(2015020164)
关键词 主元分析(PCA) 残差空间 故障检测 田纳西-伊斯曼(TE)过程 principal component analysis(PCA) residual space fault detection Tennessee Eastman(TE) process
  • 相关文献

同被引文献14

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部