摘要
为了快速准确地自动提取和识别海面舰船疑似目标,为舰船目标精检测提供可信的数据基础,采用了二值化特征进行舰船目标粗检测,并根据舰船窄而长的几何特征提出了改进算法,按照舰船目标不同的方向分别进行模板训练。实验表明,二值化特征可以有效地提取疑似舰船目标,并且改进算法可以在提取窗口数相同时,提高查全率,更利于进一步的精检测。
For accurate and efficient detection and recognition of suspected ship target,reliable data base is provided for fine detection.The binarized feature for the coarse detection of ship target is adopt.An improved algorithm is proposed based on the narrow and long geometric feature of ship.Different templates are trained on the basis of the direction of ships.Experiments demonstrate that the binarized feature performs well in the extraction of candidate ship windows,and the improved algorithm can obtain a higher recall rate than original binarized feature when extracting the same amount of windows,which is helpful for the more efficient and accurate fine detection.
作者
黄伟
严小乐
沈秋
李再升
董克松
顾逸佳
HUANG Wei YAN Xiaole SHEN Qiu LI Zaisheng DONG Kesong GU Yijia(The College of Astronautics, NUAA, Nanjing 210016, China)
出处
《光学技术》
CAS
CSCD
北大核心
2017年第5期445-449,共5页
Optical Technique
基金
国家自然科学基金项目(61201365
61401200)
江苏省普通高校研究生科研创新计划项目(SJLX15_0138)
中央高校基本科研业务费专项资金资助
关键词
光学遥感图像
舰船检测
学习训练
目标特征模型
optical remote sensing image
ship detection
training
object feature model