期刊文献+

Avramov–Martsinkovsky Type Exact Sequences with Tor Functors

Avramov–Martsinkovsky Type Exact Sequences with Tor Functors
原文传递
导出
摘要 For two classes of right R-modules W, X such that P W X, where P is the class of projective right R-modules, we show that there is an Avramov-Martsinkovsky type exact sequence with generalized Tate homology functor Tor^X,W, relative homology functors Tor^W and Tor^X. Many results in Iacob [Comm. Algebra, 35, 1589-1606 (2007)] and Liang [Algebr. Represent. Theory, 16, 1541-1560 (2013)] are generalized and improved. For two classes of right R-modules W, X such that P W X, where P is the class of projective right R-modules, we show that there is an Avramov-Martsinkovsky type exact sequence with generalized Tate homology functor Tor^X,W, relative homology functors Tor^W and Tor^X. Many results in Iacob [Comm. Algebra, 35, 1589-1606 (2007)] and Liang [Algebr. Represent. Theory, 16, 1541-1560 (2013)] are generalized and improved.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第11期1569-1577,共9页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11301240,11401475) Natural Science Foundation of Chongqing(cstc2017jcyjAX0298)
关键词 Relative homology (generalized) Tate homology Avramov-Martsinkovsky type exact sequence Relative homology, (generalized) Tate homology, Avramov-Martsinkovsky type exact sequence
  • 相关文献

参考文献1

二级参考文献19

  • 1Auslander, M. and Bridger, M., Stable module theory, Mem. Amer. Math. Soc., 94, Providence, RI, 1969.
  • 2Bennis, D. and Mahdou, N., Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra, 210, 2007, 437-445.
  • 3Bennis, D. and Mahdou, N., Global Gorenstein dimensions, Proc. Amer. Math. Soc., 138(2), 2010, 461- 465.
  • 4Bourbaki, N., Algebre homologique, Enseign. Math., Chapitre 10, Masson, Paris, 1980.
  • 5Christensen, L. W., Gorenstein Dimensions, Lecture Notes in Math., 1747, Springer-Verlag, Berlin, 2000.
  • 6Christensen, L. W., Frankild, A. and Holm, H., On Gorenstein projective, injective and flat dimensions--a functorial description with applications, J. Algebra, 302, 2006, 231-279.
  • 7Ding, N. and Chen, J., The flat dimensions of injective modules, Manuscripta Math., 78, 1993, 165-177.
  • 8Ding, N. and Chen, J., Coherent ring with finite self FP-injective dimension, Comm. Algebra, 24, 1996, 2963-2980.
  • 9Ding, N., Li, Y. and Mao, L., Strongly Gorenstein flat modules, J. Aust. Math. Soc., 86, 2009, 323-338.
  • 10Enochs, E., Jenda, O. and Torrecillas, B., Gorenstein fiat modules, J. Nanjing University, 10, 1993, 1-9.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部