摘要
针对不确定线性分数阶奇异系统的鲁棒稳定性问题,将连续频率分布等价模型引入分数阶奇异系统中,应用间接李亚普诺夫方法,设计了一个PD(Proportional-Derivative)控制器,将奇异系统正常化,给出了阶次在0<α<1范围内分数阶奇异系统全新的鲁棒渐近稳定的充分条件。利用Matlab的LMI(Linear Matrix Inequalities)工具箱及矩阵的奇异值分解(SVD:Singular Value Decomposition)求解控制器的增益,用仿真算例及数据验证该方法的有效性。
In order to solve the problem of the stability analysis of the linear descriptor fractional-order systems, the continuous frequency distributed equivalent model and the indirect Lyapunov approach are applied in the research of the linear descriptor fractional-order systems, an PD (Proportional-Derivative) controller is proposed to normalize the descriptor fractional order system. A novel sufficient condition for asymptotic stability of the descriptor fractional-order system with the order α (0 〈 α 〈 1 ) is presented. LMI ( Linear Matrix Inequalities) techniques and matrix's SVD ( Singular Value Decomposition ) are used to obtain the results. A numerical example is provided to demonstrate the effectiveness of the proposed methods.
作者
张会珍
刘宝江
邵克勇
任伟建
ZHANG Huizhen LIU Baojiang SHAO Keyong REN Weijian(School of Electrical Engineering & Information, Northeast Petroleum University, Daqing 163318, China)
出处
《吉林大学学报(信息科学版)》
CAS
2017年第4期392-397,共6页
Journal of Jilin University(Information Science Edition)
基金
国家自然科学基金资助项目(51404073)
黑龙江省教育厅科技研究基金资助项目(12541090)
关键词
鲁棒控制
奇异值分解
线性矩阵不等式
分数阶奇异系统
robust control
singular value decomposition (SVD)
linear matrix inequalities (LMI)
descriptor fractional-order system