摘要
以油中特征气体组分比值为特征量的故障诊断是变压器内部故障诊断的重要方法,但实际应用中常出现"超码"和"缺码"问题,导致故障诊断精度低.从"信息驱动"的角度,提出一种基于深度置信网络的无监督型变压器故障诊断方法.该方法利用深度置信网络的油溶解气体特征提取,构建多隐含层的深度学习模型,采用无监督特征学习方法,实现在少样本情况下的变压器故障识别问题.算例表明,所提的深度置信网络提高了电力变压器故障诊断的准确率.
It is an important way to diagnose fault in power transformer using component ratio of gas in oil as a feature, but "over size" and the "missing code" problems always happen when applied, resulting in low accuracy of fault diagnosis. Considering from "data-driver", an unsupervised method of transformer fault diagnosis based on depth belief networks is proposed. Dissolved gas in oil is used as an extraction feature in deep learning network; a deep learning model including multiple hidden layers and an unsupervised learn- ing method are constructed, aiming at soving transformer failure identification problem in the case of a small sample. The example shows that the proposed method can improve the accuracy of fault diagnosis of power transformers.
作者
姜有泉
黄良
王波
赵立进
吕黔苏
杨涛
吴建蓉
JIANG Youquan HUANG Liang WANG Bo ZHAO Lijin LU Qiansu YANG Tao WU Jianrong(Electric Power Research Institute, Guizhou Power Grid Co. , Ltd. , Guiyang 550002, China School of Electrical Engineering, Wuhan University, Wuhan 430072, China)
出处
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2017年第5期749-753,共5页
Engineering Journal of Wuhan University
基金
中国南方电网有限责任公司重点科技项目(编号:GZ2014-2-0049)
关键词
电力变压器
故障诊断
深度学习
特征提取
对比歧化
溶解气体分析(DGA)
power transformer
fault diagnosis
deep learning
feature selection
contrastive divergence
dissolved gases analysis (DGA)