摘要
以湖南株洲市区中西部为研究区域,获取该区域35个土壤样本和多光谱数据,基于多元线性回归(MLR)、偏最小二乘回归(PLS)、BP神经网络回归模型(BP),分别建立土壤重金属(Cr、Cu、Ni)含量的反演模型,并对模型预测效果进行检验。建模与预测综合效果:BP模型>PLS模型>MLR模型,BP神经网络回归模型的效果远远好于其他2组,尤其适合分析具有非明确关系的2组数据。其中,Cr元素回归模型为最佳拟合模型,建模和预测R^2分别为0.917 4、0.811 0,建模均方根误差和预测均方根误差分别为8.269 3、16.870 7,说明基于多光谱数据反演土壤重金属含量有一定的可行性。
Targeted at the region in the midwest of urban Zhuzhou area,35 soil samples and multi-spectral data are obtained in this research. Then,based on these data,three approaches are adopted to construct the model of heavy metal( Cr,Cu and Ni) contamination in soil: multiple linear regression( MLR),partial least squares regression( PLS) and BP neural network( BP). Moreover,some indexes( R2,RMSEC and RMSEP) are defined in this paper to evaluate the effectiveness of these approaches. The results show that,BP comes first followed by PLS and MLR in terms of the model's effectiveness. Besides,indexes of BP are much better than those of the other two approaches and this approach is especially suitable for the analysis of data with uncertainty relation. Among the three elements analyzed in the paper,the regression model of Cr is best in terms of imitative effect. For Cr,R-2 of modelling and prediction are 0. 917 4 and 0. 811 0 respectively,with RMSEC and RMSEP being 8. 269 3 and 16. 870 7 respectively. Meanwhile,to some extent,it is reasonable to construct quantitative inversion of heavy metal contamination in soil using multi-spectral data.
作者
成功
李嘉璇
戴之秀
CHENG Gong LI Jiaxuan DAI Zhixiu(School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China Key Laboratory of Metallogenie Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha 410083, Hunan, China)
出处
《地质学刊》
CAS
2017年第3期394-400,共7页
Journal of Geology
基金
国家重点研发计划项目(2017YFC0601503)
关键词
土壤
重金属污染
多光谱
BP神经网络
湖南株洲
Soil
heavy metal contamination
multi-spectral
BP neural network
Zhuzhou City
Hunan Province