期刊文献+

线性Hamilton系统边值问题的保辛数值方法 被引量:2

A Symplectic Approach for Boundary-Value Problems of Linear Hamiltonian Systems
下载PDF
导出
摘要 以Hamilton系统的正则变换和生成函数为基础研究线性时变Hamilton系统边值问题的保辛数值求解算法.根据第二类生成函数系数矩阵与状态传递矩阵的关系,构造了生成函数系数矩阵的区段合并递推算法,并进一步将递推算法推广到线性非齐次边值问题中;然后利用生成函数的性质将边值问题转化为初值问题,最后采用初值问题的保辛算法求解以达到整个Hamilton系统保辛的目的.数值算例表明该方法能够有效地求解线性齐次与非齐次问题,并能很好地保持Hamilton系统的固有特性. A symplectic approach based on canonical transformation and generating functions was proposed to solve boundary-value problems of linear Hamiltonian systems. According to the relationship between the generating function and the state-transition matrix,an interval merge recursive algorithm was constructed to calculate the coefficient matrices of the 2nd-type generating function for linear homogeneous Hamiltonian systems,which was further extended to nonhomogeneous cases. Then the properties of the generating function were used to transform the boundary-value problems to initialvalue problems. Finally,the general initial-value problems were solved with the symplectic numerical method to preserve the geometric structure of the Hamiltonian system. Numerical simulations show the validity of the presented approach for linear homogeneous and nonhomogeneous problems,and the advantages of the symplectic numerical method to preserve the intrinsic properties of Hamiltonian systems.
作者 蒋宪宏 邓子辰 张凯 王嘉琪 JIANG Xian-hong DENG Zi-chen ZHANG Kai WANG Jia-qi(Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072, P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2017年第9期988-998,共11页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11432010)~~
关键词 HAMILTON系统 边值问题 生成函数 传递矩阵 辛算法 Hamiltonian system boundary-value problem generating function state-transition matrix symplectic method
  • 相关文献

参考文献2

二级参考文献15

  • 1闫海青,唐晨,刘铭,张桂敏.任意阶显式精细积分多步法在刚性方程中的应用研究[J].工程数学学报,2004,21(6):1037-1040. 被引量:4
  • 2钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. 被引量:509
  • 3钟万勰.暂态历程的精细计算方法[J].计算结构力学及其应用,1995,12(1):1-6. 被引量:174
  • 4Lin JH,Shen WP,Williams FW.Accurate high-speed computation of nonstationary random seismic response.Engineering Structures,1997,19(7):586~593
  • 5Franklin Geene F,Powell J David,Workmen Michael.Digital Control of Dynamics Systems.Third Edition.Beijing:Tsinghua University Press,2001
  • 6Stengel R.Stochastic Optimal Control[M],New York:Wiley,1986.
  • 7Sage P A,C.C.White Ⅲ,Optimum Systems Control[M].New York:Prentice Hall,1977.
  • 8Goldstein H.Classical Mechanics,2nd Ed.[M].Massachusetts:Addison-Wesley,1950.
  • 9Arnold I V.Mathematical Methods of Classical Mechanics,2nd Ed.[M].Berlin:Springer,1988.
  • 10冯康,秦孟兆.哈密顿系统的辛几何算法[M].杭州:浙江科技出版社,2004.

共引文献60

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部