期刊文献+

Photo Responsive Silver Nanoparticles Incorporated Liquid Crystalline Elastomer Nanocomposites Based on Surface Plasmon Resonance 被引量:1

Photo Responsive Silver Nanoparticles Incorporated Liquid Crystalline Elastomer Nanocomposites Based on Surface Plasmon Resonance
原文传递
导出
摘要 We reported a nano-Ag/liquid crystalline elastomer(LCE) nanocomposite by incorporating silver nanopar- ticles into a monodomain polysiloxane-based LCE matrix via a novel experimental protocol. The photo-thermo- mechanical actuation of the LCE matrix was realized via the surface plasmon resonance of silver nanoparticles while converting light into heat. The photoresponsive properties of nano-Ag/LCE nanocomposites were investigated with varying ilhunination intensities and silver nanoparticle doping concentrations(0.04% to 0.2%, mass fraction). The nano-Ag/LCE nanocomposites show sensitive deformation under irradiation due to their excellent photothermal con- version efficiency, and this photostimulated muscle-like actuation is fully reversible via the on-off behavior of light. Incorporating silver nanoparticles into the LCE matrix also improves the mechanical properties and enhances the load-actuation capability of the material. We reported a nano-Ag/liquid crystalline elastomer(LCE) nanocomposite by incorporating silver nanopar- ticles into a monodomain polysiloxane-based LCE matrix via a novel experimental protocol. The photo-thermo- mechanical actuation of the LCE matrix was realized via the surface plasmon resonance of silver nanoparticles while converting light into heat. The photoresponsive properties of nano-Ag/LCE nanocomposites were investigated with varying ilhunination intensities and silver nanoparticle doping concentrations(0.04% to 0.2%, mass fraction). The nano-Ag/LCE nanocomposites show sensitive deformation under irradiation due to their excellent photothermal con- version efficiency, and this photostimulated muscle-like actuation is fully reversible via the on-off behavior of light. Incorporating silver nanoparticles into the LCE matrix also improves the mechanical properties and enhances the load-actuation capability of the material.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2017年第5期839-846,共8页 高等学校化学研究(英文版)
基金 Supported by the National Natural Science Foundation of China(No.61275117).
关键词 Silver nanoparticle Liquid crystal elastomer NANOCOMPOSITE Photo-thermo-mechanical actuation Surface plasmon resonance Silver nanoparticle Liquid crystal elastomer Nanocomposite Photo-thermo-mechanical actuation Surface plasmon resonance
  • 相关文献

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部