期刊文献+

基于节点度和连接方式的网络异质性测度方法 被引量:6

Method for Measuring the Heterogeneity of Networks Based on the Degrees and Connection Patterns of Nodes
原文传递
导出
摘要 在复杂网络异质性研究中,以往主要基于单一的网络节点度分布和度相对重要程度构建指标来刻画异质性,存在一定的缺陷。对此,综合考虑网络节点度的重要性和网络节点连接的方式,运用邻接矩阵谱理论的思想,提出一种新的网络异质性测度方法并得到网络异质性离差指标。算例表明该指标运算简便,结果合理。因此新方法可以克服传统方法的不足,更为有效地反映网络的结构特征,从而加深对网络复杂性的认识。 In the research on the complex network heterogeneity,the former methods are to construct the index based on the degree distribution and relative degree importance solely to characterize the heterogeneity.But these methods have some shortcomings.In view of this,considering the importance of node degrees and node connection patterns,this paper proposes a new measure method for network heterogeneity by using the spectral theory of adjacency matrix,and obtain an index called network heterogeneity deviation.The illustrative examples show that the index can be computed simply and the results are reasonable.So the new measure method can overcome the shortcomings of the traditional methods,reflect the network structure features more effectively,deepen the understanding of network complexity.
出处 《系统工程》 CSSCI 北大核心 2017年第4期154-158,共5页 Systems Engineering
基金 国家自然科学基金资助项目(71671094) 湖北省自然科学基金资助项目(2017CFB145) 湖北省教育厅人文社科研究项目(17G026)
关键词 异质性 节点度 邻接矩阵 网络异质性离差 Heterogeneity Node Degree Adjacency Matrix Spectrum Network Heterogeneity Deviation
  • 相关文献

参考文献8

二级参考文献148

  • 1谭跃进,吴俊.网络结构熵及其在非标度网络中的应用[J].系统工程理论与实践,2004,24(6):1-3. 被引量:127
  • 2许丹,李翔,汪小帆.复杂网络病毒传播的局域控制研究[J].物理学报,2007,56(3):1313-1317. 被引量:63
  • 3[1]Wasserman S, Faust K. Social Network Analysis: Methods and Applications [M]. Cambridge: Cambridge University Press,1994.
  • 4[2]Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology[J]. Comput Commun Rev, 1999, 29: 251-262.
  • 5[3]Lawrence S, Giles C L. Searching the world wide web[J]. Science, 1998, 280: 98-100.
  • 6[4]Albert R, Jeong H, A.L.Baraba'si. Diameter of the world-wide web[J]. Nature ,1999, 401: 130-131.
  • 7[5]Barabasi A L, Reka Albert, Hawoong Jeong. Mean-field theory for scale-free random networks[J]. Physica A, 1999, 272: 173-187.
  • 8[6]Barabasi A L, Reka Albert, Hawoong Jeong. Scale-free characteristics of random networks: the topology of the world-wide web[J]. Physica A, 2000, 281:69-77.
  • 9[9]Serrano M A, Boguna M. Topology of the world trade web[J]. Physical Review E, 2003, 68: 015101-4.
  • 10阎长俊,王启家,初长庚.系统和熵[J].沈阳建筑工程学院学报,1997,13(2):213-216. 被引量:4

共引文献248

同被引文献94

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部