期刊文献+

金属射出成型过程中黑痕与熔接线现象建模与实验分析

Modeling and Experimental Analysis of Black Area and Weld Lines in Metal Injection Molding
下载PDF
导出
摘要 以医疗用17-4PH不锈钢导引衬套的射出成型加工过程为例,探讨了金属在射出成型过程中所产生的黑痕与熔接线现象;建立数学模组分析了射出成型阶段的射出速度、保压压力、料温、模温等工艺参数对黑痕与熔接线的影响。并运用反应曲面法(RSM)并结合连续近似最佳法(SAO)来获取17-4PH不锈钢最佳化生产品质之工艺参数。结果表明,保压压力对于黑痕面积的影响远大于射出速度对其影响,但射出速度的提高不利于减少黑痕面积;在低的模温和高的料温下,黑痕面积出现最小值;而在高的模温和料温下,熔接线的区域则最小。工艺参数优化后,其生坯表面所形成的黑痕与熔接线面积较初始值分别减少了78.81%和83.85%。 The 17-4PH stainless steel guide bushing used for medical was adopted to investigate the phenomenon of black area and welding lines in the metal injection molding, and the mathematical model was presented to analyze the influences of operating parameters such as injection velocity, holding pressure, material molten temperature and mold temperature on black area and welding lines. The response surface methodology (RSM) associated with the sequential approximation optimization (SAO) method would be used to obtain the optimum parameters of 17-4PH stainless steel. The results show that the effect of holding pressure on black area is far greater than that of injection velocity, but the increase of injection velocity is not conducive to reducing black area. Under the low mold temperature and high material molten temperature, the minimum of the black area is found, whereas in the high mold and material molten temperature, the area of weld lines is the smallest. The black area and weld lines are reduced by 78.81% and 83.85%, respectively.
出处 《铸造技术》 北大核心 2017年第10期2490-2494,共5页 Foundry Technology
基金 江苏高校品牌专业建设工程资助项目(PPZY2015B186)
关键词 17-4PH不锈钢 导引衬套 黑痕 熔接线 金属射出成型 17-4PH stainless steel guide bushing black area welding lines metal injection molding
  • 相关文献

参考文献6

二级参考文献30

  • 1李会玲,杨云龙,崔国明,曾建民.铸造铝合金针孔度的图像分析[J].理化检验(物理分册),2005,41(12):613-615. 被引量:9
  • 2[美]RMGerman著 曲选辉等译.粉末注射成形[M].长沙:中南大学出版社,2001..
  • 3R. M. German, Powder Injection Molding-Design and Applications, Innovative Material Solutions, State College, PA, 2003 ; availablefrom the Metal Powder Industries Federation.
  • 4G. M. Brasel and J. A. Sago, "Designed form MIM: An Enabling Technology," Advances in Powder Metallurgy and Particulate Materials-2004, Part 4, Metal Powder Industries Federation, Princeton, NJ, 2004, pp. 125 - 141.
  • 5B. P. Smarslok and R. M. German, "Identification of Design Parameters in Metal Powder Injection Molding," Journal of Advanced Materials, 2005, voL 37, no. 4, pp. 3 - 11.
  • 6P. Suri, B. P. Smarslok, and R. M. German, "Impact Properties of Sintered and Wrought 17 -4 PH Stainless Steel," Powder Metallurgy. 2006. vol. 49. pp. 40-47.
  • 7S. R. Collins, "Corrosion Resistance of MIM 316L," Advances in Powder Metallurgy and Particulate Materials-2002, Metal Powder Industries Federation, Princeton, NJ, 2002, pp. 10. 240 - 10. 254.
  • 8H. Miura, H. Morikawa, Y. Kawakami, and A. Ishibashi, "Development of Self-Lubricating Wear Resistant Materials Through MIM Process," Journal of the Japan Society of Powder and Powder Metallurgy, 1998, vol. 45, pp. 436 -441.
  • 9R. M. German and D. Blaine, " Production Cost Sensitivity Analysis for Metal Powder Injection Molding," Advances in Powder Metallurgy and Particulate Materials-2004, Part 4, Metal Powder Industries Federation, Princeton, N J, 2004, pp. 1 - 10.
  • 10F. Zweig, "Practical Guide to PIM Production - Metals," Powder Injection Moulding, Proceedings of the First European Symposium on Powder Injection Moulding, European Powder Metallurgy Association, Shrewsbury, United Kingdom, 1997, pp. 25-30.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部