期刊文献+

基于高性能云数据挖掘的算法研究 被引量:1

An Algorithm Research Based on High-performance Cloud Date Mining
下载PDF
导出
摘要 论文设计并实现了一种可以用于存档、分析、和挖掘大型分布式数据集的高性能云。文中定义云为一种可以提供互联网资源与(或)服务的基础设施。存储云提供存储服务,计算云则提供计算服务。高性能且能保持这些服务自身的有效性和效率不变,自然很合理地被预期作为实现大规模数据挖掘的中间步骤。论文提出了一种使用Sector/Sphere框架和关联规则的云数据挖掘方法,同时给出了由Sphere计算云和关联规则支持的编程范例。 This paper describes the design and implementation of a high-performance cloud to archive, analyze and mine large distributed data sets. By a cloud, an infrastructure that provides resources and/or services over the Internet. A storage cloud provides storage services, while a compute cloud provides compute services. High-performance can be reasonably intended as a intermediate step of high-performance data mining activities over large-scale amounts of data, while still keeping unaltered the primary and self-contained focus of achieving effectiveness and efficiency in these task themselves. In this paper an algorithm is proposed to mine the data from the cloud using Sector/Sphere framework and association rules, and also describe the programming paradigm supported by the Sphere compute cloud and association rules.
作者 昂朝群 胡炜 胡冉 ANG Chaoqun HU Wei HU Ran(Department of Management and Engineering, Naval University of Engineering, Wuhan 430033 No. 91919 Troops ofPLA, Huanggang 438000)
出处 《计算机与数字工程》 2017年第9期1724-1730,共7页 Computer & Digital Engineering
关键词 SPHERE SECTOR 数据挖掘 云计算 高性能云 Sphere, Sector, data mining, cloud computing, high-performance cloud
  • 相关文献

参考文献2

二级参考文献78

  • 1刘志宏,马建峰,黄启萍.基于区域的无线传感器网络密钥管理[J].计算机学报,2006,29(9):1608-1616. 被引量:27
  • 2王良民,马建峰,王超.无线传感器网络拓扑的容错度与容侵度[J].电子学报,2006,34(8):1446-1451. 被引量:22
  • 3黄海平,王汝传,孙力娟,陈志.基于密钥联系表的无线传感器网络密钥管理方案[J].通信学报,2006,27(10):13-18. 被引量:8
  • 4沈玉龙,裴庆祺,马建峰.MMμTESLA:多基站传感器网络广播认证协议[J].计算机学报,2007,30(4):539-546. 被引量:18
  • 5马占欣,王新社,黄维通,陆玉昌.对最小置信度门限的置疑[J].计算机科学,2007,34(6):216-218. 被引量:5
  • 6AGRAWAL R, IMIELINSKI T, SWAMI A. Database mining: a per- formance perspective [ J]. IEEE Trans on Knowledge and Data Engineering,1993,5(6) : 914-925.
  • 7AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases [ C ]//Proc of ACM SIGMOD International Conference on Management of Data. New York: ACM Press,1993 : 207-216.
  • 8BRIN S, MOTWANI R, ULLMAN JD, et al. Dynamic itemset counting and implication rules for market basket data[ C ]//Proc of ACM SIGMOD International Conference on Management of data. New York: ACM Press, 1997 : 255-264.
  • 9SAVASERE A, OMIECINSKI E, NAVATHE S. An efficient algo- rithm for mining association rules in large databases[ C ]//Proc of the 21st International Conference on Very Large Data Bases. San Francis- co: Morgan Kaufmann Publishers,1995 : 432-444.
  • 10YE Qiang, LI Yi-jun, ZHANG Jie. Improved method in association rule mining[ C]//Proc of the 8th Asia Pacific Management Confe- rence. 2002 : 1 - 8.

共引文献98

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部