期刊文献+

基于动态标签偏好信任概率矩阵分解模型的推荐算法 被引量:4

Recommendation Algorithm Based on Dynamic Label Preference Trust Probability Matrix Decomposition Model
下载PDF
导出
摘要 为提高推荐算法性能,解决数据稀疏和冷启动因素造成的推荐精度不高的问题,提出一种改进的协同过滤推荐算法。基于三元组表示形式,利用标签集、用户集和项目资源集构建标签、用户以及项目之间的动态联系,并进行信任值评分矩阵的计算,使用信任评分矩阵融合协同推荐过程,构建概率矩阵分解模型,并基于期望最大法进行模型的求解。实验结果表明,与采用基于余弦、皮尔逊相关系数和启发式相似度模型的算法相比,该算法具有较低的绝对误差均值以及较高的覆盖率、精度与召回率。 In order to improve the collaborative performance of recommendation algorithms and solve the problem of low recommendation accuracy caused by sparse data and cold start, an improved collaborative filtering recommendation algorithm is proposed in this paper. Based on three tuple representation, it uses the tag set, the user set and the project resource set to construct the dynamic relationship among the labels, the users and the project, and it also computes the trust value score matrix. It uses the trust rating matrix fusion collaborative recommendation process to construct probability matrix decomposition model and solves the model the expectation maximization method. Experimental results show that compared with other algorithms which are based on cosine, Pearson correlation coefficient and heuristic similarity model, this algorithm has lower absolute mean error as well as higher coverage rate ,precision and recall rate.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第10期160-166,共7页 Computer Engineering
基金 湖北省教育厅科研计划项目(Q20151101) 赛尔网络下一代互联网技术创新项目(NGII20150301)
关键词 协同过滤推荐 数据稀疏 冷启动 概率矩阵分解 标签偏好 期望最大法 collaborative filtering recommendation data sparse cold start probability matrix decomposition labelpreference expectation maximization method
  • 相关文献

参考文献8

二级参考文献104

  • 1万洪林,彭玉华,郭锐.基于方向的自适应多级中值滤波[J].通信学报,2006,27(4):119-123. 被引量:19
  • 2王涛,高新波,张都应.一种基于内容的图像质量评价测度[J].中国图象图形学报,2007,12(6):1002-1007. 被引量:15
  • 3杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 4Huang T S, Yang G J, Tang G Y. Fast two-dimensional median filtering algorithm [ J]. IEEE Transactions on Signal Processing, 1979,27(1) : 13-18.
  • 5Nodes T A, Gallagher N C. The output distribution of median type filters [J]. IEEE Transactions on Communications, 1984,32(5): 532 -541.
  • 6Hwang H, Haddad R A. Adaptive median filter: New algorithms and results [ J ]. IEEE Transactions on Image Processing, 1995,4 (4): 499-502.
  • 7Eng H L ,Ma K K. Noise adaptive soft-switching median filter [ J]. IEEE Transactions on Image Process,2001,10(2) : 242-251.
  • 8Russo F. Noise removal from image data using recursive neuro fuzzy filter [J]. IEEE Transactions on Instrumentation and Measurement, 2000,49(2) : 307-345.
  • 9Ko S J ,Lee S J. Center weighted median filters and their application to image enhancement [J]. IEEE Transactions on Circuits Systems, 1991,15(9) : 984 -993.
  • 10Wang J H, Liu W J , Lin L D. Histogram-based fuzzy filter for image restoration [J]. IEEE Transactions on System,Man,and Cybernetics, 2002,32 (2) : 230-238.

共引文献64

同被引文献41

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部