期刊文献+

面向分类的增量字典学习算法 被引量:1

Classification-oriented Incremental Dictionary Learning Algorithm
下载PDF
导出
摘要 针对面向分类的传统字典学习方法在大数据集上批量学习时计算代价较高的问题,提出一种类特定的增量式字典学习算法。该算法在初始训练集上进行类特定的字典学习得到初始字典,通过增量数据集选取增量字典原子初始值。根据不能在初始字典上稀疏表示且互信息最大的原则,从增量样本集中选取若干样本作为增量字典原子的初始值。在保持原有字典原子不变的情况下,迭代更新编码系数和增量字典原子,直至收敛得到新的字典。利用稀疏表示分类器,在Eclipse数据集和ORL人脸图像数据库上的实验结果验证了该算法的分类有效性和计算代价上的优越性。 Aiming at the problem that the computation cost of the traditional classification-oriented dictionary learning algorithms is too expensive on big datasets, this paper proposes a novel classification-oriented incremental dictionary learning algorithm. In the algorithm, the class-specific dictionary learning is conducted on the initial training set to obtain the initial dictionary. And the initial values of the incremental dictionary atoms are selected on the incremental data set. Based on the principle that the samples cannot be sparsely represented by old atoms and have the maximum mutual information, some samples are selected as the initial value of the incremental dictionary atoms. Keeping the original dictionary unchanged, the coding coefficient and the incremental dictionary atoms are updated iteratively until the convergence is realized and the new dictionary is obtained. Sparse representation classifier is used as classifier in experiments. Experimental results on the Eclipse software defect dataset and ORL face image database show that the proposed algorithm is effective in classification and has superiority in computational cost.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第10期167-171,185,共6页 Computer Engineering
基金 国家自然科学基金(61073113) 江苏省普通高校研究生科研创新计划项目(CXZZ12_0478)
关键词 增量学习 字典学习 类特定字典 稀疏编码 稀疏表示分类 incremental learning dictionary learning class-specific dictionary sparse coding sparse representationclassification
  • 相关文献

参考文献1

二级参考文献135

  • 1张海,王尧,常象宇,徐宗本.L_(1/2)正则化[J].中国科学:信息科学,2010,40(3):412-422. 被引量:15
  • 2Hubel D H, Wiesel T N. Receptive fields of single neurons in the cat's striate cortex. Journal of Physiology, 1959, 148(3): 574-591.
  • 3Willshaw D J, Buneman O P, Longuet-Higgins H C. Non- holographic associative memory. Nature, 1969, 222(5197): 960-962.
  • 4Barlow H B. Single units and sensation: A neuron doctrine for perceptual psychology? Perception, 1972, 1(4): 371-394.
  • 5Oja E. Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 1982, 15(3): 267-273.
  • 6Pham T T, Defigueiredo R J P. Maximum likelihood estima- tion of a class of non-Gaussian densities with application toLp deconvolution. IEEE Transaction on Acoustics, Speech, and Signal Process, 1989, 37(1): 73-82.
  • 7Jutten C, Herault J. Blind separation of sources, Part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991, 24(1): 1-10.
  • 8Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
  • 9Chen S S, Donoho D L. Saunders M A. Atomic Decompo- sition by Basis Pursuit. Technical Report, Stanford Univer- sity, Britain, 1995.
  • 10Olshausen B A, Field D J. Emergency of simple-cell recep- tive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.

共引文献120

同被引文献22

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部