期刊文献+

Kinect彩色图像在光标移动控制中的应用

Application of Kinect Color Image in Cursor Movement Control
下载PDF
导出
摘要 传统光标控制方式不能较好满足残疾、野外工作等人员的工作需求,而用Kinect识别人体不同的动作类型来实现光标控制时,由于控制方式过于单一,存在动作类型过多且相互干扰的情况。为此,提出将Kinect提取的彩色图像和骨骼数据相结合的方法实现光标的移动控制。从彩色图像上提取可变的像素颜色,以此减少动作类型数量,同时避免动作之间的相互干扰。给出光标移动控制中涉及到的坐标映射相关理论的计算公式。实验结果表明,将感应器彩色图像应用于光标移动控制中是可行的,与单一控制方式相比,具有更好的移动控制性能,通过调节公式中的相关参数更加灵活地实现鼠标控制。 Traditional cursor control ways cannot better meet the job requirements of disabled persons, field work personnel,etc. When Kinect is used to identify different types of human actions to achieve cursor control, there are too many types of actions and interference between each other due to the single control mode. So this paper proposes the method of combining color image and skeleton data extracted by Kinect to implement the cursor movement control. The extracted pixel colors are variable,which can reduce the number of action types while avoiding the interference between actions. The calculation formulas of coordinate mapping theory related to cursor movement control are given. By adjusting the related parameters in the formula, the mouse can be controlled more flexibly. Experimental results show that it is feasible to use Kinect color image in the cursor movement control. Compared with the single control mode,the proposed method has better mobile control performance.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第10期241-245,共5页 Computer Engineering
关键词 Kinect感应器 像素颜色提取 坐标映射 光标移动控制 相互干扰 Kinect sensor pixel color extraction coordinate mapping cursor movement control mutual interference
  • 相关文献

参考文献4

二级参考文献37

  • 1王永强,于德敏,许增朴.点云数据与CAD/CAM软件接口方法研究与实现[J].微计算机信息,2005,21(06X):63-65. 被引量:2
  • 2徐继红,张文斌.非接触式三维人体扫描技术的综述[J].扬州职业大学学报,2006,10(3):49-53. 被引量:22
  • 3TONG Jing,ZHOU Jin,LIU Ligang,et al.Scanning3D full human bodies using Kinects[J].Visualization and Computer Graphics,2012,18(4):643-650.
  • 4Sheu Jang-Ping, Sahoo P K, Su Chang-Hsia, et al. Efficient Path Planning and Data Gathering Protocols for the Wireless Sensor Network[J]. Computer Communications, 2010, 33(2): 398-408.
  • 5Ravari A R N, Taghirad H D, Tamjidi A H. Vision-based Fuzzy Navigation of Mobile Robots in Grassland Environments[C]//Proc. of International Conference on Advanced Intelligent Mechatronics. [S. 1.]: IEEE/ASME Press, 2009.
  • 6Benavidez P. Mobile Robot Navigation and Target Tracking System[C]//Proc. of the 6th International Conference on Systems Engineering. Albuquerque, USA: IEEE Press, 2011.
  • 7Smisek J, Jancosek M, Pajdla T. 3D with Kinect[C]//Proc. of International Conference on Computer Vision Workshops. Barcelona, Spain: IEEE Press, 2011.
  • 8Fu Yili. Fuzzy Logic Based Mobile Robot Area Filling with Vision System for Indoor Environment[C]//Proc. of IEEE International Symposium on Computational Intelligence in Robotics and Automation. Monterey, USA: IEEE Press, 1999.
  • 9Perez D A, Melendez W M, Guzman J. Fuzzy Logic Based Speed Planning for Autonomous Navigation Under Velocity Field Control[C]//Proc. of International Conference on Mechatronics. Malaga, Spain: IEEE Press, 2009.
  • 10Zun Aidi, Kato N, Nomura . Path Planning Based on Geographical Features Information for an Autonomous Mobile Robot[J]. Artificial Life and Robotics, 2006, 10(2): 149-156.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部