期刊文献+

基于人工神经网络模型的非球形颗粒曳力系数预测 被引量:6

Prediction of Drag Coefficient Using Artificial Neural Network in a Non-spherical Particle System
原文传递
导出
摘要 本文通过人工神经网络预测方法对非球形颗粒气固曳力系数进行了预测及分析。首先比较了BP(Backpropagation)神经网络模型和RBF(Radical Basis Function)基神经网络模型对Pettyjohn和Christiansen等人实验工况中的结果进行了预测。结果表明,采用RBF方法预测非球形颗粒气固曳力系数误差较小,计算效率较高。同时,应用RBF基神经网络模型,对不同形状因子下的气固曳力系数进行了预测和分析。研究结果表明,人工神经网络可以用于非球形颗粒气固曳力系数的预测研究,本文研究结果为复杂形状颗粒气固曳力系数的预测提供了一种有效的手段。 In this paper, the prediction and investigation on drag coefficient of non-spherical particles is presented applying artificial neural network. The performance between BP(Backpropagation) model and RBF(Radical Basis Function) model is compared. The RBF model is employed to predict the drag coefficient of non-spherical particles with higher efficiency and less error. The simulation results are compared with the experimental results in the literature by using RBF model. It reveals that artificial neural network can be applied to the prediction on the drag coefficient of non-spherical particles.
作者 闫盛楠 唐天琪 任安星 何玉荣 YAN Sheng-Nan TANG Tian-Qi REN An-Xing HE Yu-Rong(School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2017年第10期2171-2175,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金重大研究计划(No.91534112) 国家自然科学基金委优秀青年基金(No.51322601)
关键词 人工神经网络 非球形颗粒 曳力系数 artificial neural network non-spherical particles drag coefficient
  • 相关文献

参考文献2

二级参考文献18

  • 1武妍,王守觉.一种通过反馈提高神经网络学习性能的新算法[J].计算机研究与发展,2004,41(9):1488-1492. 被引量:15
  • 2王守觉,曹文明.半导体神经计算机的硬件实现及其在连续语音识别中的应用[J].电子学报,2006,34(2):267-271. 被引量:3
  • 3韩立群.人工神经网络[M].北京:北京邮电出版社,2006.
  • 4Jenkins B K,Tanguay A R. Handbook of Neural Computing and Neural Networks[M]. Boston: MIT Press,1995.
  • 5Bnlsabi A. Some analytical solutions to the general approximation problem for feed forward neural networks[J]. Neural Networks 1993(6): 991-996.
  • 6Setiono R,Leow W K.FERNN: An algorithm for fast extraction of rules from neural networks[J]. Applied Intelligence,2000, 12(1-2): 15-25.
  • 7XIA Min,FANG Jian-an,TANG Yang,et al. Dynamic depression control of chaotic neural networks for associative memory[J]. Neurocomputing, 2010(73),776-783.
  • 8OZ C,LEU M C. American sign language word recognition with a sensory glove using artificial neural networks[J].Engineering Applications of Artificial Intelligence,2011(4):1204-1213.
  • 9Singhal D, Swarup K S. Electricity price forecasting using artificial neural networks[J]. Electrical Power and Energy Systems,2011(3):550-555.
  • 10WU Wei,WANG Jian,CHENG Ming-song,et al. Convergence analysis of online gradient method for BP neural networks[J]. Neural Networks , 2011(24):91-98.

共引文献541

同被引文献121

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部