期刊文献+

格栅颗粒复合堆积床内流动传热的实验研究 被引量:2

Experimental Study on Fluid Flow and Heat Transfer in Grille-Sphere Composite Packed Bed
原文传递
导出
摘要 颗粒有序堆积床相比于颗粒无序堆积床具有压降较小的优点,但在实际操作中,有序堆积床的实现具有一定的难度,本文设计了一种可快速实现有序堆积的新结构,即带有格栅的复合颗粒堆积结构。采用萘升华热质比拟方法对格栅颗粒复合堆积结构中的颗粒-流体对流传热系数进行了研究。结果表明,格栅复合堆积结构相比于简单立方堆积结构,压降略高,但传热系数也有大幅度提高;而相比于无序结构,在传热系数下降不多的情况下,压降大大减低。格栅颗粒复合堆积结构的综合传热系数最高,可为堆积床的设计提供一种新的思路。 Structured packed beds can have a lower pressure drop compared to randomly packed beds. However, structured packed beds are hard to achieve. In the present paper, we designed a structure that can obtain a structured packed bed more easily, that is the grille-sphere composite packed bed. The fluid flow and particle-to-fluid heat transfer characteristics are experimentally investigated by naphthalene sublimation technique and the heat-to-mass analogy. Results show that firstly, compared to the simple cubic packing, the grille-sphere composite packed bed has a slightly higher pressure drop and can improve the heat transfer at the same time. Secondly, the pressure drop of the grille-sphere composite packed bed is much lower than that of randomly packed bed, while the heat transfer decreases just a little. Finally, the grille-sphere composite packed bed has the highest overall heat transfer coefficient among three packed beds. Results of the present paper provide a new method to improve the overall heat transfer property of packed beds.
作者 王晶钰 杨剑 胡映学 刘衍 王秋旺 WANG Jing-Yu YANG Jian HU Ying-Xue LIU Yan WANG Qiu-Wang(MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2017年第10期2225-2228,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金(No.51536007 No.51476124)
关键词 格栅颗粒复合堆积 颗粒有序堆积床 热质比拟 萘升华 对流传热 grille-sphere composite packed bed structured packed bed heat-to-mass analogy naphthalene sublimation convective heat transfer
  • 相关文献

参考文献1

二级参考文献11

  • 1Ranz W E, Marshall W R. Evaporation From Drops, Part I [J]. Chemial Engineering Progress, 1952, 48(3): 173 -180.
  • 2Wakao N, Kaguei S, Funazkri T. Effect of Fluid Disper- sion Coefficients on Particle-To-Fluid Heat Transfer Coef- ficients in Packed Beds [J]. Chemical Engineering Science, 1979, 34(3): 325-36.
  • 3Bird R B. Transport Phenomena [M]. New York, USA: John Wiley And Sons, 1960.
  • 4Gnielinski V. Correlations for Calculating Heat-Transfer of Single Rows of Tubes and Tube Bundles in Cross-Flow [J]. Forschung Im Ingenieurwesen-Engineering Research, 1978, 44(1): 15 -25.
  • 5Atmakidis T, Kenig E Y. Numerical Analysis of Mass Transfer in Packed-Bed Reactors With Irregular Parti- cle Arrangements [J]. Chemical Engineering Science, 2012, 81:77 -83.
  • 6Dwivedi P N, Upadhyay S N. Particle-Fluid Mass Transfer in Fixed and Fluidized Beds [J]. Industrial & Engineering Chemistry Process Design and Development, 1977, 16(2): 157- 165.
  • 7Petrovic L J, Thodos G. Mass Transfer in Flow of Gases Through Packed Beds [J]. Low Reynolds Number Region, Industrial & Engineering Chemistry Fundamentals, 1968, 7(2): 274-280.
  • 8Achenbach E. Heat and Flow Characteristics of Packed Beds [J]. Experimental Thermal and Fluid Science, 1995, 10(1): 17-27.
  • 9Eisfeld B, Schnitzlein K. The Influence of Confining Walls on the Pressure Drop in Packed Beds [J]. Chemical Engi- neering Science, 2001, 56(14): 4321-4329.
  • 10Sogin H H. Sublimation From Disks to Air Streams Flow- ing Normal to Their Surfaces [J]. Trans ASME, 1958, 80(1): 61-69.

共引文献4

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部