摘要
玻璃边部的磨削质量的快速检测是保证玻璃品质的重要措施,本文对现有的玻璃磨边缺陷进行了分类与成因分析,选用了一套合理的玻璃磨边缺陷检测光源,设计了一套基于机器视觉的玻璃边部缺陷检测装置,提出一种结合了快速傅立叶变换、高斯滤波、亚像素边缘阈值分割、数学形态学运算、频域处理和最小二乘法的检测方法,实验证明所提出的检测方法能够快速有效地检测出亮斑、白线和爆边3种缺陷.
The rapid detection of glass edge grinding quality is an important measure to ensure the quality of glass. The elassifieation of existing glass edge defects is analyzed. The cause of formation of defect is concisely intro- duced. A kind of reasonable light source for detecting defect on ground glass edge is selected. The detection device for glass edge defects based on machine vision has been established. Detection methods based on Gauss filter, sub- pixel threshold segmentation, mathematical morphology operation, frequency domain processing and the least square method are proposed. It is shown that the methods can effectively detect the bright spot, white line and edge breakage.
作者
赵俊冉
王东兴
冷惠文
罗昆
ZHAO Jun-ran WANG Dong-xing LENG Hui-wen LUO Kun(School of Eleetromechanie, al and Automobile Engineering, Yantai University, Yantai 264005, Chin)
出处
《烟台大学学报(自然科学与工程版)》
CAS
2017年第4期328-334,共7页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
国家自然科学基金资助项目(11371070)
关键词
玻璃
磨边
缺陷
机器视觉
光源
图像处理
glass
edge grinding
defect
machine vision
light
image process