期刊文献+

基于粗糙集和神经网络的舰载直升机航材消耗预测研究 被引量:6

Demand Prediction of Carried Aviation Materials for Ship-borne Helicopters
下载PDF
导出
摘要 针对舰载直升机航材消耗影响因素的非定量性以及冗余性等问题,以舰载直升机操作平台某机械类易耗件的消耗预测为例,分析了影响其消耗的因素,利用粗糙集的理论知识约简方法去除冗余,选择出主要影响航材消耗的因素,利用神经网络建立了航材消耗的预测模型。最后比较了该模型的预测效果和直接神经网络预测的效果,显示了模型的实用性和有效性,为航材的消耗预测提供了一种有效的决策方法。 In view of the ship-borne helicopter material consumption influence factors of the quantitative and redundancy, as ship-borne helicopter operation platform, a precision instrument parts consumption forecast as an example, the factors affecting the consumption are analyzed, the theory of rough set knowledge reduction method is used to remove redundancy, the main factors af fecting the consumption of material are chosen, material consumption is established based on the neural network prediction model. Finally the prediction resuhs of the model and the effect of neural network prediction are compared, the practicability and validity of the model are shown, an effective decision is provided for material consumption forecast method.
作者 韩玉 张作刚 张海军 HAN Yu ZHANG Zuogang ZHANG Haijun(Naval Aeronautical Engineering Institute Qingdao Branch, Qingdao 266041 Naval Aeronautical and Astronautical University, Yantai 264001)
出处 《舰船电子工程》 2017年第9期96-99,共4页 Ship Electronic Engineering
关键词 神经网络 粗糙集 预测 航材 neural network, rough sets, to predict, supply chain
  • 相关文献

参考文献4

二级参考文献21

共引文献24

同被引文献66

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部