期刊文献+

Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy 被引量:4

Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy
原文传递
导出
摘要 Objective: Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. Data Sources: This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords:"stem cells," "hypoxic preconditioning," "ischemic preconditioning," and "cell transplantation."Study Selection: Original articles and critical reviews on the topics were selected. Results: Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. Conclusions: In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications. Objective: Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. Data Sources: This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords:"stem cells," "hypoxic preconditioning," "ischemic preconditioning," and "cell transplantation."Study Selection: Original articles and critical reviews on the topics were selected. Results: Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. Conclusions: In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.
出处 《Chinese Medical Journal》 SCIE CAS CSCD 2017年第19期2361-2374,共14页 中华医学杂志(英文版)
关键词 Angiogenesis Factor Cell Transplantation Endogenous Stem Cells Genome Editing HYPOXIA Hypoxic Preconditioning Induced Pluripotent Stem Cells Neurological Disorders TUMOR Angiogenesis Factor Cell Transplantation Endogenous Stem Cells Genome Editing Hypoxia Hypoxic Preconditioning Induced Pluripotent Stem Cells Neurological Disorders Tumor
  • 相关文献

参考文献2

二级参考文献97

  • 1Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: The reconstructive surgeon's point of view. J Cell Mol Med 2006;10:7-19.
  • 2Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920-6.
  • 3Murphy CM, O'Brien FJ, Little DG, Schindeler A. Cell-scaffold interactions in the bone tissue engineering triad. Eur Cell Mater 2013;26:120-32.
  • 4Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: State of the art and future trends. Macromol Biosci 2004;4:743-65.
  • 5Gu Y, Chen L, Yang HL, Luo ZP, Tang TS. Evaluation of an injectable silk fibroin enhanced calcium phosphate cement loaded with human recombinant bone morphogenetic protein-2 in ovine lumbar interbody fusion. J Biomed Mater Res A 2011;97:177-85.
  • 6Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine (Phila Pa 1976). 1995;20:1055-60.
  • 7Goulet JA, Senunas LE, DeSilva GL, Greenfield ML. Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res 1997;339:76-81.
  • 8Parikh SN. Bone graft substitutes: Past, present, future. J Postgrad Med 2002;48:142-8.
  • 9Grauer JN, Beiner JM, Kwon B, Vaccaro AR. The evolution of allograft bone for spinal applications. Orthopedics 2005;28:573-7.
  • 10Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg 2005;13:77-86.

共引文献10

同被引文献16

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部