摘要
对于一个给定的非线性方程组,通过一系列的变化,可以将其构造成一个函数,从而把非线性方程组的求解问题转换为求函数极小值问题.通过利用正交表的数据分析方法,给出了求函数极小值进而求解非线性方程组的方法,这种方法得到的解比已有的更精确,且大大缩减了复杂方程组的计算量,用时少,不需要初始值.最后,采用Matlab软件,验证了其可行性和有效性.
For a given nonlinear equation systems, we can construct a function through a series of change. Then the problem to solve nonlinear equation systems is transformed to that to find function minimum. By the data analysis method of orthogonal design, this paper presents a general method to find function minimum and to solve the nonlinear equation systems. By this kind of method we can obtain more accurate solutions than the existing methods in [1-4]. And this method without the initial values greatly reduces the calculation of complex equation systems. Finally through simulation with Matlab language, the feasibility and effectiveness of this method are verified.
作者
庞善起
鹿姗姗
PANG Shan-qi LU Shan-shan(College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, Chin)
出处
《数学的实践与认识》
北大核心
2017年第18期213-224,共12页
Mathematics in Practice and Theory
基金
国家自然科学基金(11571094)