期刊文献+

一类非线性方程组的求解 被引量:2

A Method to Solve a Class of Nonlinear Equation Systems
原文传递
导出
摘要 对于一个给定的非线性方程组,通过一系列的变化,可以将其构造成一个函数,从而把非线性方程组的求解问题转换为求函数极小值问题.通过利用正交表的数据分析方法,给出了求函数极小值进而求解非线性方程组的方法,这种方法得到的解比已有的更精确,且大大缩减了复杂方程组的计算量,用时少,不需要初始值.最后,采用Matlab软件,验证了其可行性和有效性. For a given nonlinear equation systems, we can construct a function through a series of change. Then the problem to solve nonlinear equation systems is transformed to that to find function minimum. By the data analysis method of orthogonal design, this paper presents a general method to find function minimum and to solve the nonlinear equation systems. By this kind of method we can obtain more accurate solutions than the existing methods in [1-4]. And this method without the initial values greatly reduces the calculation of complex equation systems. Finally through simulation with Matlab language, the feasibility and effectiveness of this method are verified.
作者 庞善起 鹿姗姗 PANG Shan-qi LU Shan-shan(College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, Chin)
出处 《数学的实践与认识》 北大核心 2017年第18期213-224,共12页 Mathematics in Practice and Theory
基金 国家自然科学基金(11571094)
关键词 正交表的数据分析 方程组的求解 函数极值 MATLAB语言 Data analysis of orthogonal design solving equation function extreme value Matlab language
  • 相关文献

参考文献6

二级参考文献53

  • 1李晓磊,路飞,田国会,钱积新.组合优化问题的人工鱼群算法应用[J].山东大学学报(工学版),2004,34(5):64-67. 被引量:162
  • 2安恒斌,白中治.NGLM:一类全局收敛的Newton-GMRES方法[J].计算数学,2005,27(2):151-174. 被引量:14
  • 3白中治,安恒斌.关于Newton-GMRES方法的有效变型与全局收敛性研究[J].数值计算与计算机应用,2005,26(4):291-300. 被引量:11
  • 4精通Matlab[M].北京:电子工业出版社,2008.
  • 5杨超,洪冠新.求解非线性代数方程组的一种建议方法[J].飞行力学,1997,15(2):42-46. 被引量:15
  • 6黄象鼎,曾钟钢,马亚南.非线性方程的数值解法[M].武汉:武汉大学出版社,2000.
  • 7Sharma J R, Guha R K, Sharma R. An efficient fourth order weighted-Newton method for systems of nonlinear equations[J]. Numerical Algorithms, 2013, 62(2): 307-323.
  • 8Colbabai A, Javidi M. A new family of iterative methods for solving system of nonlinear algebric equations[J]. Applied Mathematics and Computation, 2007, 190(2): 1717-1722.
  • 9Darvishi M T, Barati A. Super cubic iterative methods to solve systems of nonlinear equations[J]. Applied Mathematics and Computation, 2007, 188(2): 1678-1685.
  • 10Babajee D K R, Dauhoo M Z, Darvishi M T, Barati A. A note on the local convergence of iter- ative methods based on Adomian decomposition method and 3-node quadrature rule[J]. Applied Mathematics and Computation, 2008, 200(1): 452-458.

共引文献46

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部